首页> 外文期刊>Journal of Molecular Biology >THERMODYNAMIC INVESTIGATION OF HIRUDIN BINDING TO THE SLOW AND FAST FORMS OF THROMBIN - EVIDENCE FOR FOLDING TRANSITIONS IN THE INHIBITOR AND PROTEASE COUPLED TO BINDING
【24h】

THERMODYNAMIC INVESTIGATION OF HIRUDIN BINDING TO THE SLOW AND FAST FORMS OF THROMBIN - EVIDENCE FOR FOLDING TRANSITIONS IN THE INHIBITOR AND PROTEASE COUPLED TO BINDING

机译:对凝血酶缓慢和快速结合的酪蛋白结合的热力学研究-抑制剂和蛋白酶结合结合折叠转变的证据。

获取原文
获取原文并翻译 | 示例
       

摘要

Temperature dependent studies of the interaction of the clotting enzyme thrombin with the potent natural inhibitor hirudin reveal a large negative heat capacity change of -1.7(+/-0.2) kcal/mol per K associated with the formation of the thrombin-hirudin complex, independent of the allosteric state of the enzyme. Binding of N-terminal fragments of hirudin (hir(1-49) and hir(1-43)) is characterized by heat capacity changes of -1.2(+/-0.1) and -0.9(+/-0.1) kcal/mol per K, respectively The magnitude of these heat capacity changes is unprecedented for protease-inhibitor interactions. A thermodynamic analysis based on observed heat capacity and entropy changes predicts that binding is accompanied by substantial coupled folding transitions in both hirudin and thrombin. In the absence of a structure of free thrombin, analysis of differences in the predicted number of residues which fold upon binding hirudin and its fragments leads to the following structural model: three surface loops in thrombin (W60d, W148 and fibrinogen binding loops) are disordered in the free state and fold upon formation of the thrombin-hirudin complex. Molecular dynamics simulations, run over a time scale of 5 ps, are consistent with the hypothesis of large scale coupled folding transitions in both hirudin and thrombin upon formation of the complex. Comparison of the thermodynamics for the interaction of hirudin with the slow and fast forms of thrombin allows dissection of the coupling free energy for allosteric switching. The coupling free energy for the slow-->fast transition increases linearly, in absolute value, with temperature. The coupling enthalpy and entropy terms for hirudin were found to be Delta H-c(o) = 12(+/-1) kcal/mol and Delta S-c(o) = 47(+/-4) cal/mol per K. Preferential interaction with the fast form is therefore due to the balance of two opposite forces, both quite large in magnitude. The contribution of enthalpic effects opposes the slow-->fast transition and stabilizes binding to the slow form. The contribution of entropic effects favors the slow-->fast transition and stabilizes binding to the fast form. In the physiological temperature range the entropic effects prevail and result in preferential binding of hirudin to the fast form. The region of thrombin recognizing the N-terminal domain of hirudin contains most of the residues that are energetically linked to the slow-->fast transition. This region is part of the ''allosteric core'' of thrombin and includes the W60d loop, shaping the specificity site S2, and the Na+ binding loop connecting the last two beta-strands of the B chain. (C) 1995 Academic Press Limited [References: 55]
机译:凝血酶凝血酶与强力天然抑制剂水rud素相互作用的温度依赖性研究表明,每K负热容值为-1.7(+/- 0.2)kcal / mol,与凝血酶-水ud素复合物的形成有关,独立酶的变构状态。水rud素(hir(1-49)和hir(1-43))N端片段的结合以-1.2(+/- 0.1)和-0.9(+/- 0.1)kcal / mol的热容变化为特征这些热容量变化的幅度对于蛋白酶-抑制剂相互作用是前所未有的。基于观察到的热容量和熵变化的热力学分析预测,结合在水rud素和凝血酶中都伴随着显着的偶联折叠转变。在缺乏游离凝血酶结构的情况下,结合水rud素及其片段折叠时预测的残基数量差异的分析导致以下结构模型:凝血酶中的三个表面环(W60d,W148和纤维蛋白原结合环)无序处于游离状态并在凝血酶-水hir素复合物形成时折叠。分子动力学模拟在5 ps的时间尺度上运行,与水the素和凝血酶在形成复合物时发生大规模偶联折叠过渡的假说相符。比较水rud素与缓慢和快速形式的凝血酶相互作用的热力学可以分离出用于构构转换的偶联自由能。从慢到快的跃迁的耦合自由能的绝对值随温度线性增加。水hi素的耦合焓和熵项为每K Delta Hc(o)= 12(+/- 1)kcal / mol和Delta Sc(o)= 47(+/- 4)cal / mol。因此,快速形式的产生是由于两个相反的力的平衡,两者的大小都很大。焓效应的贡献与缓慢→快速过渡相反,并稳定了与缓慢形式的结合。熵效应的贡献有利于缓慢→快速过渡,并稳定与快速形式的结合。在生理温度范围内,熵作用占优势,并导致水rud素与快速形式的优先结合。识别水rud素N端结构域的凝血酶区域包含大多数与慢->快转变强力连接的残基。该区域是凝血酶“变构核心”的一部分,包括形成特异性位点S2的W60d环和连接B链最后两个β链的Na +结合环。 (C)1995 Academic Press Limited [参考号:55]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号