首页> 外文期刊>Journal of Molecular Biology >Pulling chromatin fibers: computer simulations of direct physical micromanipulations.
【24h】

Pulling chromatin fibers: computer simulations of direct physical micromanipulations.

机译:拉染色质纤维:直接物理显微操作的计算机模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

A low-resolution molecular model, which combines the known mechanical properties of protein-free DNA with the accumulating picture of chromatosome structure, has been developed to account for the stretching of single chromatin fibers by an imposed external force. Force-extension characteristics of sets of chains accumulated by Monte Carlo sampling are consistent with recently observed findings in the non-destructive regime (<20 pN imposed force), where the structure of the chromatosome remains intact. The correspondence between simulation and the relaxation phase of the experiment limits the equilibrium entry-exit angle of linker DNA on the chromatosome to W=50(+/-10) degrees and the effective DNA linker length to L(eff)=40(+/-5) bp. The computed force-extension characteristics are relatively insensitive to other parameters of the model, precluding their accurate estimation. The introduction of an attractive potential between closely spaced nucleosomes reproduces the added initial resistance of single fibers to extension at high salt conditions. The consideration of elastic linkers also improves the fitting of assorted classical measurements of unstressed chromatin structure in solution. The overall picture of chromatin that emerges is an irregular, fluctuating, three-dimensional, zig-zag structure with intact, mechanically stable chromatosome units and deformable linkers. The modeled fiber undergoes large-scale configurational rearrangements without significant perturbation of the constituent chromatosome beads, collapsing into a highly condensed form in response to small (<2kT) inter-nucleosomal attractions. Copyright 2000 Academic Press.
机译:已开发出一种低分辨率分子模型,该模型将无蛋白质的DNA的已知机械特性与染色体结构的累积图相结合,以解决单染色质纤维在外力作用下的拉伸问题。通过蒙特卡洛采样积累的链集的力延伸特性与最近在非破坏性机制(施加的力<20 pN)中观察到的发现一致,其中染色体的结构保持完整。模拟与实验的弛豫阶段之间的对应关系将连接体DNA在染色体上的平衡进出角限制为W = 50(+/- 10)度,有效DNA连接体长度为L(eff)= 40(+ / -5)bp。计算出的力-伸长特性对模型的其他参数相对不敏感,从而排除了它们的准确估计。在紧密间隔的核小体之间引入诱人的电势可重现单纤维对高盐条件下延伸的初始抗性。弹性接头的考虑还改善了溶液中无应力染色质结构的各种经典测量的拟合度。出现的染色质的整体图像是不规则的,波动的,三维之字形结构,具有完整,机械稳定的染色体单元和可变形的接头。建模的纤维会经历大规模的构型重排,而不会严重干扰组成的染色体小珠,并响应较小的(<2kT)核小体间吸引力而折叠成高度凝聚的形式。版权所有2000学术出版社。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号