首页> 外文期刊>Journal of Molecular Biology >Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations
【24h】

Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations

机译:分子动力学模拟显示肝炎三角洲病毒RNA酶前体和产物的结构动力学

获取原文
获取原文并翻译 | 示例
           

摘要

The hepatitis delta virus (HDV) ribozyme is a self-cleaving RNA enzyme involved in the replication of a human pathogen, the hepatitis delta virus. Recent crystal structures of the precursor and product of self-cleavage, together with detailed kinetic analyses, have led to hypotheses on the catalytic strategies employed by the HDV ribozyme. We report molecular dynamics (MD) simulations (similar to 120 ns total simulation time) to test the plausibility that specific conformational rearrangements are involved in catalysis. Site-specific self-cleavage requires cytidine in position 75 (C75). A precursor simulation with unprotonated C75 reveals a rather weak dynamic binding of C75 in the catalytic pocket with spontaneous, transient formation of a H-bond between U-1(O2') and C75(N3). This H-bond would be required for C75 to act as the general base. Upon protonation in the precursor, C75H(+) has a tendency to move towards its product location and establish a firm H-bonding network within the catalytic pocket. However, a C75H(+)(N3)-G1(O5') H-bond, which would be expected if C75 acted as a general acid catalyst, is not observed on the present simulation timescale. The adjacent loop L3 is relatively dynamic and may serve as a flexible structural element, possibly gated by the closing U20(.)G25 base-pair, to facilitate a conformational switch induced by a protonated C75H(+). L3 also controls the electrostatic environment of the catalytic core, which in turn may modulate C75 base strength and metal ion binding. We find that a distant RNA tertiary interaction involving a protonated cytidine (C41) becomes unstable when left unprotonated, leading to disruptive conformational rearrangements adjacent to the catalytic core. A Na ion temporarily compensates for the loss of the protonated hydrogen bond, which is strikingly consistent with the experimentally observed synergy between low pH and high Na+ concentrations in mediating residual self-cleavage of the HDV ribozyme in the absence of divalents. (c) 2005 Elsevier Ltd. All rights reserved.
机译:肝炎三角洲病毒(HDV)核酶是一种自我裂解的RNA酶,参与人类病原体肝炎三角洲病毒的复制。前体和自我裂解产物的最新晶体结构,再加上详细的动力学分析,导致人们对HDV核酶所采用的催化策略提出了假设。我们报告了分子动力学(MD)模拟(类似于120 ns的总模拟时间),以测试特定构象重排参与催化的合理性。特定于位点的自我切割在75位(C75)需要胞苷。使用未质子化的C75进行的前体模拟显示,催化口袋中C75的动态结合相当弱,并且在U-1(O2')和C75(N3)之间自发且短暂地形成了H键。要使C75用作通用基,需要使用这种H键。在前体质子化后,C75H(+)趋向于朝其产品位置移动并在催化腔内建立牢固的H键网络。但是,在当前的模拟时间尺度上,未观察到C75H(+)(N3)-G1(O5')H键。相邻的回路L3是相对动态的,可以用作可能由闭合U20(。)G25碱基对封闭的灵活结构元素,以促进由质子化C75H(+)引起的构象转换。 L3还控制催化核的静电环境,这又可以调节C75碱强度和金属离子结合。我们发现涉及质子化胞苷(C41)的远距离RNA三级相互作用在不进行质子化时变得不稳定,从而导致邻近催化核心的破坏性构象重排。 Na离子暂时补偿质子化氢键的损失,这与低pH和高Na +浓度之间的介导的HDV核酶残留自我裂解的低pH和高Na +浓度之间的实验观察到的协同作用惊人地一致。 (c)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号