...
首页> 外文期刊>Journal of Molecular Biology >DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo.
【24h】

DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo.

机译:DsbA和DsbC催化的蛋白质在体外和体内具有复杂的二硫键结构的氧化折叠。

获取原文
获取原文并翻译 | 示例

摘要

Oxidative protein folding in the periplasm of Escherichia coli is catalyzed by the thiol-disulfide oxidoreductases DsbA and DsbC. We investigated the catalytic efficiency of these enzymes during folding of proteins with a very complex disulfide pattern in vivo and in vitro, using the Ragi bifunctional inhibitor (RBI) as model substrate. RBI is a 13.1 kDa protein with five overlapping disulfide bonds. We show that reduced RBI can be refolded quantitatively in glutathione redox buffers in vitro and spontaneously adopts the single correct conformation out of 750 possible species with five disulfide bonds. Under oxidizing redox conditions, however, RBI folding is hampered by accumulation of a large number of intermediates with non-native disulfide bonds, while a surprisingly low number of intermediates accumulates under optimal or reducing redox conditions. DsbC catalyzes folding of RBI under all redox conditions in vitro, but is particularly efficient in rearranging buried, non-native disulfide bonds formed under oxidizing conditions. In contrast, the influence of DsbA on the refolding reaction is essentially restricted to reducing redox conditions where disulfide formation is rate limiting. The effects of DsbA and DsbC on folding of RBI in E.coli are very similar to those observed in vitro. Whereas overexpression of DsbA has no effect on the amount of correctly folded RBI, co-expression of DsbC enhanced the efficiency of RBI folding in the periplasm of E.coli about 14-fold. Addition of reduced glutathione to the growth medium together with DsbC overexpression further increased the folding yield of RBI in vivo to 26-fold. This shows that DsbC is the bacterial enzyme of choice for improving the periplasmic folding yields of proteins with very complex disulfide bond patterns.
机译:大肠杆菌周质中的氧化性蛋白质折叠是由巯基-二硫键氧化还原酶DsbA和DsbC催化的。我们使用Ragi双功能抑制剂(RBI)作为模型底物,研究了体内和体外具有非常复杂的二硫键模式的蛋白质折叠过程中这些酶的催化效率。 RBI是一种13.1 kDa蛋白,具有五个重叠的二硫键。我们显示减少的RBI可以在体外在谷胱甘肽氧化还原缓冲液中进行定量重折叠,并自发采用750种可能的具有五个二硫键的单一正确构象。然而,在氧化性氧化还原条件下,大量具有非天然二硫键的中间体的积累阻碍了RBI折叠,而在最佳或还原性氧化还原条件下,令人惊讶地少量中间体的积累。 DsbC可以在体外所有氧化还原条件下催化RBI的折叠,但是在重新排列在氧化条件下形成的掩埋的非天然二硫键方面特别有效。相反,DsbA对重折叠反应的影响基本上仅限于减少氧化还原条件,其中二硫键的形成是速率限制。 DsbA和DsbC对大肠杆菌中RBI折叠的影响与体外观察到的非常相似。 DsbA的过表达对正确折叠的RBI的量没有影响,而DsbC的共表达将RBI在大肠杆菌周质中的折叠效率提高了约14倍。向生长培养基中添加还原型谷胱甘肽与DsbC过表达一起,将体内RBI的折叠产量进一步提高到26倍。这表明DsbC是提高具有非常复杂的二硫键模式的蛋白质的周质折叠产量的首选细菌酶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号