...
首页> 外文期刊>Journal of molecular graphics & modelling >Structural basis for cooperative binding of azoles to CYP2E1 as interpreted through guided molecular dynamics simulations
【24h】

Structural basis for cooperative binding of azoles to CYP2E1 as interpreted through guided molecular dynamics simulations

机译:指导的分子动力学模拟解释了唑类与CYP2E1协同结合的结构基础

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

CYP2E1 metabolizes a wide array of small, hydrophobic molecules, resulting in their detoxification or activation into carcinogens through Michaelis-Menten as well as cooperative mechanisms. Nevertheless, the molecular determinants for CYP2E1 specificity and metabolic efficiency toward these compounds are still unknown. Herein, we employed computational docking studies coupled to molecular dynamics simulations to provide a critical perspective for understanding a structural basis for cooperativity observed for an array of azoles from our previous binding and catalytic studies (Hartman et al., 2014). The resulting 28 CYP2E1 complexes in this study revealed a common passageway for azoles that included a hydrophobic steric barrier causing a pause in movement toward the active site. The entrance to the active site acted like a second sieve to restrict access to the inner chamber. Collectively, these interactions impacted the final orientation of azoles reaching the active site and hence could explain differences in their biochemical properties observed in our previous studies, such as the consequences of methylation at position 5 of the azole ring. The association of a second azole demonstrated significant differences in interactions stabilizing the bound complex than observed for the,first binding event. Intermolecular interactions occurred between the two azoles as well as CYP2E1 residue side chains and backbone and involved both hydrophobic contacts and hydrogen bonds. The relative importance of these interactions depended on the structure of the respective azoles indicating the absence of specific defining criteria for binding unlike the well-characterized dominant role of hydrophobicity in active site binding. Consequently, the structure activity relationships described here and elsewhere are necessary to more accurately identify factors impacting the observation and significance of cooperativity in CYP2E1 binding and catalysis toward drugs, dietary compounds, and pollutants. (C) 2014 Elsevier Inc. All rights reserved.
机译:CYP2E1代谢大量疏水性小分子,从而通过Michaelis-Menten以及合作机制将其解毒或活化为致癌物。然而,对于这些化合物CYP2E1特异性和代谢效率的分子决定因素仍然未知。在本文中,我们将计算对接研究与分子动力学模拟相结合,为理解我们先前的结合和催化研究中观察到的一系列吡咯的协同作用的结构基础提供了重要的视角(Hartman等,2014)。在这项研究中得到的28种CYP2E1复合物揭示了唑类的常见通道,其中包括疏水性空间屏障,导致向活性位点移动的暂停。活动地点的入口就像第二个筛子一样,限制进入内室。总的来说,这些相互作用影响了吡咯到达活性位点的最终方向,因此可以解释我们先前研究中观察到的其生化特性的差异,例如唑环5位甲基化的后果。与第一结合事件所观察到的相比,第二唑的缔合显示出稳定结合的复合物的相互作用存在显着差异。两种唑类以及CYP2E1残基侧链和主链之间发生了分子间相互作用,涉及疏水性接触和氢键。这些相互作用的相对重要性取决于各自的吡咯的结构,这表明不存在明确的结合定义标准,这与疏水性在活性位点结合中的众所周知的主导作用不同。因此,在这里和其他地方描述的结构活性关系对于更准确地识别影响CYP2E1结合和催化药物,膳食化合物和污染物的协同作用的观察和意义的因素是必要的。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号