...
首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation
【24h】

Annealing of magnetic nanoparticles for their encapsulation into microcarriers guided by vascular magnetic resonance navigation

机译:磁性纳米颗粒的退火,用于封装在血管磁共振导航引导下的微载体中

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Iron, cobalt and iron-cobalt nanoparticle properties, such as diameter, saturation magnetization (Ms), crystal structure, surface composition and stability in physiological solutions, were investigated according to the annealing temperature used prior to their encapsulation into poly(D, L-lactic-co-glycolic acid) (PLGA) microcarriers. These new 60-lm microparticles should exhibit an Ms around 70 emu g~(-1) to be guided in real time from their intravascular injection site to a tumor with a magnetic resonance imaging scanner. The challenge in the preparation of the nanoparticles consisted in limiting Ms loss by oxidation and the release of metallic ions. It was found that when the annealing temperature reached 650 °C, Fe nanoparticles coalesced, the mean diameter reached (?) 361 ± 138 nm and Ms increased to 171 emu g~(-1). These nanoparticles exhibited a core of α-Fe and a shell of Fe_3O_4. On the opposite, Co nanoparticle properties were not affected by the annealing temperature: ? and Ms were around 120 nm and 140 emu g~(-1), respectively. FeCo (60:40, atomic percent) nanoparticles coalesced at an annealing temperature >550 °C, ? and Ms reached 217 nm and 213 emu g~(-1), respectively. Co and FeCo nanoparticles with a Co atomic proportion >15 % were coated with a graphite shell when the temperature was set to 550 °C. In physiological solution, Fe and Co nanoparticles significantly released more ions than FeCo nanoparticles. After the preparation steps prior to their encapsulation, the Ms of Fe and FeCo nanoparticles decreased by 25 and 3 %, respectively. FeCo-PLGA microparticles possessed a relatively high Ms (73 emu g~(-1)) while that of Fe-PLGA microparticle (20 emu g~(-1)) was too low for efficient targeting. The graphite shell was efficient to preserve Ms during the encapsulation.
机译:铁,钴和铁-钴纳米粒子的性质,例如直径,饱和磁化强度(Ms),晶体结构,表面组成和生理溶液的稳定性,根据将其封装到聚(D,L-乳酸-乙醇酸(PLGA)微载体。这些新的60 lm微粒应表现出大约70 emu g〜(-1)的Ms,并通过磁共振成像扫描仪实时将其从血管内注射部位实时引导至肿瘤。制备纳米颗粒的挑战在于限制氧化引起的Ms损失和金属离子的释放。发现当退火温度达到650℃时,Fe纳米颗粒聚结,平均直径达到(λ)361±138nm,并且Ms增加至171emu g·(-1)。这些纳米颗粒表现出α-Fe的核和Fe_3O_4的壳。相反,Co纳米颗粒的性能不受退火温度的影响: Ms分别为120 nm和140 emu g〜(-1)。 FeCo(60:40,原子百分比)的纳米颗粒在退火温度> 550°C时聚结。 Ms分别达到217 nm和213 emu g〜(-1)。当温度设定为550°C时,Co原子比例> 15%的Co和FeCo纳米颗粒被石墨壳覆盖。在生理溶液中,Fe和Co纳米粒子比FeCo纳米粒子释放出更多的离子。在包封之前的制备步骤之后,Fe和FeCo纳米粒子的Ms分别降低了25%和3%。 FeCo-PLGA微粒具有相对较高的Ms(73 emu g〜(-1)),而Fe-PLGA微粒(20 emu g〜(-1))太低,无法有效靶向。石墨壳在封装过程中有效地保留了Ms。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号