...
首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects
【24h】

Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects

机译:具有纳米流体互连的三维微流体器件中离子流的建模和仿真

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electrokinetic fluid flow in nanocapillary array (NCA) membranes between vertically separated microfluidic channels offers an attractive alternative to using mechanical action to achieve fluidic communication between different regions of lab-on-a-chip devices. By adjusting the channel diameter, a, and the inverse Debye length, kappa, and applying the appropriate external potential, the nanochannel arrays, can be made to behave like digital fluidic switches, and the movement of molecules from one side of the array to the other side can be controlled. However, inherent differences in ionic mobility lead to non-equilibrium ion populations on the downstream side, which, in turn, shows up through transient changes in the microchannel conductance. Here we describe coupled calculations and experiments in which the electrical properties of a microfluidic-nanofluidic hybrid architecture are simulated by a combination of a compact model for the bulk electrical properties and iterative self-consistent solutions of the coupled Poisson, Nernst-Planck, and Navier-Stokes equations to recover the detailed ion motion in the nanopores. The transient electrical conductivity in the microchannel, after application of a forward bias pulse to the NCA membrane, is recovered in quantitative detail. The surface charge density of the nanopores and the capacitance of the membrane, which are critical determinants of electrokinetic flow through NCA, fall out of the analysis in a natural way, providing a clear mechanism to determine these critically important parameters.
机译:垂直分离的微流体通道之间的纳米毛细管阵列(NCA)膜中的电动流体流动提供了一种有吸引力的替代方法,可代替使用机械作用来实现芯片实验室设备的不同区域之间的流体连通。通过调节通道直径a和反德拜长度kappa,并施加适当的外部电势,可以使纳米通道阵列的行为类似于数字流体开关,并使分子从阵列的一侧移动到分子。对方可以控制。但是,离子迁移率的内在差异会导致下游侧的非平衡离子种群,进而通过微通道电导的瞬态变化显示出来。在这里,我们描述了耦合计算和实验,其中微流体-纳米流体混合体系结构的电特性是通过结合体电特性的紧凑模型和耦合的Poisson,Nernst-Planck和Navier的迭代自洽解来模拟的-斯托克斯方程,以恢复纳米孔中详细的离子运动。在向NCA膜施加正向偏置脉冲后,微通道中的瞬态电导率将得到定量恢复。纳米孔的表面电荷密度和膜的电容是通过NCA的电动势的关键决定因素,自然而然地不在分析之列,为确定这些关键的重要参数提供了明确的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号