...
首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer
【24h】

A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

机译:纳米流体的导热系数模型,包括取决于温度的界面层的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for various nanoparticle sizes.
机译:最近已经显示出纳米颗粒的界面层对纳米流体的热导率具有影响。然而,仍然没有包括温度和纳米颗粒尺寸变化对厚度并因此对界面层的热导率的影响的热导率模型。在目前的工作中,Leong等人开发的平稳模型。 (J Nanopart Res 8:245-254,2006)最初被修改为包括由于纳米粒子的布朗运动而产生的热分散效应。该模型称为“ Leong等人的动态模型”。然而,Leong等人的动力学模型在流动流体的情况下高估了纳米流体的热导率。这表明由于温度升高导致流动的纳米流体的热导率提高并非来自热分散效应。流动的纳米流体的传热增强可能来自与温度有关的界面层效应。因此,再次修改了Leong等人的固定模型,以包括温度变化对不同尺寸的纳米粒子对界面层导热率的影响。然后评估该当前模型,并将其与其他导热率模型进行比较,以沿着均匀加热的管将纳米流体中的湍流对流换热。结果表明,在可以预测纳米流体对非流动流体和流动流体两者的导热率的温度和体积分数依赖性的意义上,本模型比其他模型更通用。另外,由于包含了温度相关界面层的影响,因此它比其他模型更准确。总之,本模型可以准确预测由于各种纳米颗粒的体积分数和温度的变化而引起的纳米流体导热系数的变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号