首页> 外文学位 >Investigation and identification of physical mechanism for enhanced thermal conductivity in nanofluids using molecular level modeling .
【24h】

Investigation and identification of physical mechanism for enhanced thermal conductivity in nanofluids using molecular level modeling .

机译:分子水平模拟研究和鉴定增强纳米流体导热的物理机制。

获取原文
获取原文并翻译 | 示例

摘要

Over the last decade a significant research effort has been committed to exploring the thermal transport properties of colloidal suspensions of nanosized solid particles (nanofluids). Initial experiments with Cu-water nanofluids measured up to a 40% increase in thermal conductivity for a mere 0.3% volume fraction of ∼10 nanometer (nm) diameter Cu particles. This increase is significantly larger than predicted by effective medium theory (EMT) of a composite material comprised of well dispersed particles. However, other experimental work on various compositions of nanoparticles and fluids has demonstrated thermal conductivity increases more in line with EMT. A number of possible origins for such behavior have been proposed, but a consensus has yet to emerge. More of the literature attempts to find correlations based on EMT that fit the experimental data rather than exploring the underlying mechanism. The likely candidate theories of liquid layering at the particle-fluid interface, Brownian motion induced heat transfer and particle aggregation are thoroughly explored in this thesis.;We undertake a systematic investigation of these most likely mechanisms for enhanced thermal conductivity in nanofluids utilizing various analytical modeling techniques including equilibrium and non-equilibrium molecular dynamics (MD). We demonstrate that aggregation of nanoparticles is the most likely mechanism for enhanced thermal conductivity. We also include the effect of Kapitza interfacial resistance and aggregate shape on nanofluid thermal conductivity.;Using our aggregate models, we investigate nanofluid viscosity. Nanoparticle clusters are shown to increase the nanofluid viscosity by up to 75% at 5% volume fraction. Overall the nanofluid exhibits shear thinning behavior.
机译:在过去的十年中,致力于研究纳米尺寸固体颗粒(纳米流体)胶体悬浮液的热传输特性。最初使用铜-水纳米流体进行的实验测得,直径仅为10纳米(nm)的铜颗粒的体积分数仅为0.3%,导热系数最多可提高40%。这种增加远大于有效介质理论(EMT)预测的,由分散良好的颗粒组成的复合材料的预测值。但是,有关纳米粒子和流体的各种组成的其他实验工作表明,热导率的增加与EMT一致。已经提出了这种行为的许多可能的起源,但是尚未达成共识。越来越多的文献试图基于EMT找到适合实验数据的相关性,而不是探索潜在的机制。本文详细探讨了可能存在的颗粒-流体界面处的液体分层,布朗运动引起的传热和颗粒聚集的潜在理论。;我们利用各种分析模型,对提高纳米流体导热性的最可能机制进行了系统研究。平衡和非平衡分子动力学(MD)等技术。我们证明了纳米粒子的聚集是提高导热系数的最可能的机制。我们还包括Kapitza界面阻力和聚集体形状对纳米流体导热系数的影响。使用我们的聚集体模型,我们研究了纳米流体的粘度。纳米粒子簇显示出在5%的体积分数下将纳米流体的粘度增加了高达75%。总体而言,纳米流体表现出剪切稀化行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号