...
首页> 外文期刊>Journal of Molecular and Cellular Cardiology >Optical imaging of mitochondrial function uncovers actively propagating waves of mitochondrial membrane potential collapse across intact heart.
【24h】

Optical imaging of mitochondrial function uncovers actively propagating waves of mitochondrial membrane potential collapse across intact heart.

机译:线粒体功能的光学成像揭示了完整心脏中线粒体膜电位的活跃传播波。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Polarization of the mitochondrial membrane potential (DeltaPsi(m)) is critical for normal mitochondrial function and cellular energetics. Mitochondrial dysfunction, manifesting as disrupted DeltaPsi(m) polarization (i.e. depolarization or hyperpolarization), underlies several important and highly prevalent diseases, including a variety of cardiac and neurological disorders. As such, DeltaPsi(m) instability might form a unifying mechanism for a class of metabolic disorders affecting excitable tissues. Here, we measured the spatio-temporal kinetics of DeltaPsi(m) changes across the intact heart using high-resolution optical DeltaPsi(m) imaging and uncovered surprisingly complex spatial patterns and dynamically fluctuating changes in DeltaPsi(m) that developed into actively propagating waves of mitochondrial depolarization during global ischemia. Our data further indicated that the recovery of DeltaPsi(m) upon reperfusion is dictated by the duration of the preceding ischemic insult. Post-ischemic electrical and functional recovery was dependent on early DeltaPsi(m) recovery but independent of overall cellular injury measured using a standard assay of lactate dehydrogenase release. These findings reveal a novel mechanism by which instabilities in cellular energetic properties that are independent of irreversible cellular injury can scale to the level of the intact organ via an organized process of active conduction involving the multi-cellular network. This highlights the importance of investigating cellular metabolic properties in the context of the intact organ.
机译:线粒体膜电位(DeltaPsi(m))的极化对于正常的线粒体功能和细胞能量学至关重要。线粒体功能障碍表现为DeltaPsi(m)极化中断(即去极化或超极化),是几种重要且高度流行的疾病的基础,包括各种心脏和神经系统疾病。这样,DeltaPsi(m)的不稳定性可能会形成一类影响可兴奋组织的代谢紊乱的统一机制。在这里,我们使用高分辨率光学DeltaPsi(m)成像测量了整个完整心脏的DeltaPsi(m)变化的时空动力学,发现了令人惊讶的复杂空间模式,并且动态地波动了DeltaPsi(m)的变化,这些变化演变为主动传播的波局部缺血期间线粒体去极化的作用。我们的数据进一步表明,再灌注后DeltaPsi(m)的恢复取决于先前的缺血性损伤的持续时间。缺血后的电和功能恢复取决于早期的DeltaPsi(m)恢复,但与使用乳酸脱氢酶释放的标准测定法测量的总体细胞损伤无关。这些发现揭示了一种新颖的机制,通过这种机制,与不可逆性细胞损伤无关的细胞能量特性的不稳定性可以通过涉及多细胞网络的有组织的主动传导过程,扩展到完整器官的水平。这突出了研究完整器官背景下细胞代谢特性的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号