...
首页> 外文期刊>Journal of Molecular and Cellular Cardiology >ATP-sensitive K(+) channel channel/enzyme multimer: Metabolic gating in the heart.
【24h】

ATP-sensitive K(+) channel channel/enzyme multimer: Metabolic gating in the heart.

机译:ATP敏感的K(+)通道通道/酶多聚体:心脏中的代谢门控。

获取原文
获取原文并翻译 | 示例
           

摘要

Cardiac ATP-sensitive K(+) (K(ATP)) channels, gated by cellular metabolism, are formed by association of the inwardly rectifying potassium channel Kir6.2, the potassium conducting subunit, and SUR2A, the ATP-binding cassette protein that serves as the regulatory subunit. Kir6.2 is the principal site of ATP-induced channel inhibition, while SUR2A regulates K(+) flux through adenine nucleotide binding and catalysis. The ATPase-driven conformations within the regulatory SUR2A subunit of the K(ATP) channel complex have determinate linkage with the states of the channel's pore. The probability and life-time of ATPase-induced SUR2A intermediates, rather than competitive nucleotide binding alone, defines nucleotide-dependent K(ATP) channel gating. Cooperative interaction, instead of independent contribution of individual nucleotide binding domains within the SUR2A subunit, serves a decisive role in defining K(ATP) channel behavior. Integration of K(ATP) channels with the cellular energetic network renders these channel/enzyme heteromultimers high-fidelity metabolic sensors. This vital function is facilitated through phosphotransfer enzyme-mediated transmission of controllable energetic signals. By virtue of coupling with cellular energetic networks and the ability to decode metabolic signals, K(ATP) channels set membrane excitability to match demand for homeostatic maintenance. This new paradigm in the operation of an ion channel multimer is essential in providing the basis for K(ATP) channel function in the cardiac cell, and for understanding genetic defects associated with life-threatening diseases that result from the inability of the channel complex to optimally fulfill its physiological role.
机译:由细胞代谢控制的心脏ATP敏感K(+)(K(ATP))通道是由向内整流的钾通道Kir6.2,钾传导亚基和SUR2A(即ATP结合盒蛋白)结合而成的充当调节亚基。 Kir6.2是ATP诱导通道抑制的主要位点,而SUR2A通过腺嘌呤核苷酸结合和催化调节K(+)通量。 K(ATP)通道复合物的调节性SUR2A亚基内的ATPase驱动的构象已确定与通道孔状态的联系。 ATPase诱导的SUR2A中间体的可能性和寿命,而不是单独的竞争性核苷酸结合,定义了核苷酸依赖性K(ATP)通道门控。合作互动,而不是SUR2A亚基内单个核苷酸结合域的独立贡献,在定义K(ATP)通道行为中起决定性作用。 K(ATP)通道与细胞能量网络的集成使这些通道/酶异源多聚体成为高保真代谢传感器。通过磷酸转移酶介导的可控能量信号的传递,促进了这一重要功能。凭借与细胞能量网络的耦合以及对代谢信号进行解码的能力,K(ATP)通道设置了膜兴奋性,以适应稳态维护的需求。离子通道多聚体操作的这一新范例对于为心肌细胞中的K(ATP)通道功能提供基础,以及理解与由于通道复合物无法进行而导致生命危险的疾病相关的遗传缺陷至关重要。最佳地发挥其生理作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号