...
首页> 外文期刊>Journal of Medicinal Chemistry >Role of the C(6)-hydroxy group in bicyclomycin: synthesis, structure, and chemical, biochemical, and biological properties.
【24h】

Role of the C(6)-hydroxy group in bicyclomycin: synthesis, structure, and chemical, biochemical, and biological properties.

机译:C(6)-羟基在双环霉素中的作用:合成,结构和化学,生化和生物学特性。

获取原文
获取原文并翻译 | 示例

摘要

Bicyclomycin (1) is a commercial antibiotic whose primary site of action in Escherichia coli is the transcription termination factor rho. A recent structure-activity relationship study of 1 showed that replacing the C(6)-hydroxy group with alkoxy and thioalkoxy substituents led to dramatic losses of inhibitory activity in rho biochemical assays. The origin for this structural specificity has been explored by the synthesis and chemical, biochemical, and biological evaluation of C(6)-amino- (13), C(6)-(hydroxylamino)-(14), and C(6)-mercaptobicyclomycin (15). These compounds, like 1, are capable of entering into hydrogen bond donor interactions with rho and are capable of undergoing C(6) ring opening to generate alpha, beta-unsaturated carbonyl, imine, or thione systems. The chemical reactivity of 13-15 was compared with that of 1. We observed that 1, upon treatment with EtSH under moderate and basic conditions, readily underwent C(6) hemiaminal bond cleavage followed by conjugate addition to beta-methylene-alpha-ketoamide 2 to give Michael addition adducts whereas 13-15 reacted by initial cleavage of the C(1)-O(2) bond. Biochemical and biological assays of 13-15 and related analogues demonstrated that the C(6) hydroxy group in 1 was essential for activity. We found that replacing the C(6)-hydroxy group in 1 with weaker hydrogen bond donors led to low inhibitory activities in the rho-dependent ATPase and transcription termination assays. None of the bicyclomycin derivatives exhibited antibiotic activity against E. coli W3350 cells at a 32 mg/mL concentration. The apparent specificity for the C(6)-hydroxy group in 1 suggests that an efficient hydrogen bond donor interaction from the C(6)-hydroxy group to rho or the C(6) hemiaminal bond cleavage to 2 or both is necessary for drug function.
机译:双环霉素(1)是一种商业抗生素,其在大肠杆菌中的主要作用位点是转录终止因子rho。最近的结构活性关系研究1显示,用烷氧基和硫代烷氧基取代基取代C(6)-羟基会导致rho生化分析中抑制活性的急剧下降。这种结构特异性的起源已通过C(6)-氨基-(13),C(6)-(羟基氨基)-(14)和C(6)的合成及化学,生物化学和生物学评估进行了探索-巯基双环霉素(15)。这些化合物,像1一样,能够与​​rho进入氢键供体相互作用,并且能够进行C(6)开环以生成α,β-不饱和羰基,亚胺或硫酮系统。将13-15的化学反应性与1的化学反应性进行了比较。我们观察到1,在中等和碱性条件下用EtSH处理后,很容易进行C(6)半胱氨酸键裂解,然后将共轭物添加到β-亚甲基-α-酮酰胺中2给出迈克尔加成加合物,而13-15通过初始裂解C(1)-O(2)键反应。 13-15和相关类似物的生化和生物学测定表明1中的C(6)羟基对于活性至关重要。我们发现用较弱的氢键供体代替1中的C(6)-羟基导致在rho依赖性ATPase和转录终止分析中的低抑制活性。双环霉素衍生物均未在32 mg / mL的浓度下对大肠杆菌W3350细胞表现出抗生素活性。对C(6)-羟基在1中的表观特异性表明,从C(6)-羟基到rho或C(6)半价键裂解为2或两者的有效氢键供体相互作用对于药物而言是必要的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号