...
首页> 外文期刊>Journal of Lie theory >Classification des Structures CR Invariantes pour les Groupes de Lie Compacts
【24h】

Classification des Structures CR Invariantes pour les Groupes de Lie Compacts

机译:紧凑李群的不变CR结构分类

获取原文
获取原文并翻译 | 示例
           

摘要

Let G_0 be a compact Lie group of dimension N whose Lie algebra is g_0. The notion of CR structure on a C~∞ manifold is known a long time ago. In this note we are interested by the CR stuctures on G_0 which are invariant by the left action of the group on the tangent bundle and which are of maximal rank. Such a structure is defined by its fibre h at the neutral element which is a subalgebra of the complexification g of g_0 whose dimension is the entire part [N/2] of N/2 and whose intersection with g_0 is equal to {0}. Up to conjugation by the adjoint group of g_0, these subalgebras are classified. When N is even, there is only one type, type CR0. When N is odd, there are two types, type CR0 and type CRI. These types are given in terms of Cartan subalgebras and root systems. In any case, these subalgebras are solvable. Following M. S. Baouendi, L. P. Rothschild and F. Treves ["CR structures with group action and extendability of CR functions", Inventiones Mathematicae 82 (1985) 359--396], we introduce the notion of CR structures which are G_0-invariant and invariant by the transverse action of a G_0-invariant Lie subgroup. When this group is commutative, we get the notion of G_0-rigidity. We then prove, when N is odd, that a G_0-invariant CR structure, of maximal rank, is G_0-rigid if and only if the fibre of the CR structure at the neutral element, is of type CR0. Following H. Jacobowitz ["The canonical bundle and realizable CR hypersurfaces", Pacific Journal of Mathematics 127 (1987) 91--101], we introduce the canonical fibre bundle K of a G_0-invariant CR structure, of maximal rank, when N is odd. We prove that K contains a closed G_0-invariant form if and only if the fibre of the CR structure at the neutral element, is of type CR0 or type CRII. As for type CR0 and CRI, the CRII type is defined up to conjugation by the adjoint group of g_0 in terms of Cartan subalgebras an root systems. In fact, every subalgebra of type CRII is of type CRI.
机译:令G_0为维李的代数为g_0的紧Lie群。 C〜∞流形上的CR结构的概念是很早以前就知道的。在本说明中,我们对G_0上的CR结构感兴趣,这些结构因切线束上的组的左动作而不变,并且具有最大的秩。这种结构由其纤维h在中性元素处定义,中性元素是g_0的络合物g的子代数,其维度是N / 2的整个部分[N / 2],并且与g_0的交点等于{0}。直到由g_0的伴随组进行共轭,这些子代数才被分类。当N为偶数时,只有一种类型,即CR0。当N为奇数时,有两种类型,CR0类型和CRI类型。这些类型是根据Cartan子代数和根系统给出的。无论如何,这些子代数是可解的。继MS Baouendi,LP Rothschild和F. Treves [“具有CR的集体作用和可扩展性的CR结构”,Inventions Mathematicae 82(1985)359--396]之后,我们介绍了G_0不变和不变的CR结构的概念通过G_0不变Lie子群的横向作用。当该组是可交换的时,我们得到G_0刚度的概念。然后我们证明,当N为奇数时,当且仅当在中性元素处的CR结构的纤维为CR0类型时,最大秩的G_0不变CR结构才为G_0刚性。遵循H. Jacobowitz [“规范束和可实现的CR超曲面”,太平洋数学杂志127(1987)91--101],我们引入了G_0不变CR结构,最大秩,当N为N时的规范纤维束K。很奇怪我们证明,当且仅当在中性元素处的CR结构的纤维为CR0类型或CRII类型时,K包含闭合的G_0不变形式。对于CR0和CRI类型,CRII类型由g_0的伴随组根据Cartan子代数根系统定义。实际上,每个CRII类型的子代数都是CRI类型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号