...
首页> 外文期刊>Journal of Mathematical Biology >Mathematical modelling and numerical simulations of actin dynamics in the eukaryotic cell
【24h】

Mathematical modelling and numerical simulations of actin dynamics in the eukaryotic cell

机译:真核细胞肌动蛋白动力学的数学建模和数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aim of this article is to study cell deformation and cell movement by considering both the mechanical and biochemical properties of the cortical network of actin filaments and its concentration. Actin is a polymer that can exist either in filamentous form (F-actin) or in monometric form (G-actin) (Chen et al. in Trends Biochem Sci 25:19-23, 2000) and the filamentous form is arranged in a paired helix of two protofilaments (Ananthakrishnan et al. in Recent Res Devel Biophys 5:39-69, 2006). By assuming that cell deformations are a result of the cortical actin dynamics in the cell cytoskeleton, we consider a continuum mathematical model that couples the mechanics of the network of actin filaments with its bio-chemical dynamics. Numerical treatment of the model is carried out using the moving grid finite element method (Madzvamuse et al. in J Comput Phys 190:478-500, 2003). Furthermore, by assuming slow deformations of the cell, we use linear stability theory to validate the numerical simulation results close to bifurcation points. Far from bifurcation points, we show that the mathematical model is able to describe the complex cell deformations typically observed in experimental results. Our numerical results illustrate cell expansion, cell contraction, cell translation and cell relocation as well as cell protrusions. In all these results, the contractile tonicity formed by the association of actin filaments to the myosin II motor proteins is identified as a key bifurcation parameter.
机译:本文的目的是通过考虑肌动蛋白丝的皮质网络的机械和生化特性及其浓度来研究细胞变形和细胞运动。肌动蛋白是一种聚合物,可以以丝状(F-actin)或单一形式(G-actin)(Chen等,Trends Biochem Sci 25:19-23,2000)存在,并且丝状排列为配对的两个原丝的螺旋(Ananthakrishnan等人,《近期研究发展生物学》 5:39-69,2006)。通过假设细胞变形是细胞骨架中皮质肌动蛋白动力学的结果,我们考虑了一个连续数学模型,该模型将肌动蛋白丝网络的力学与其生化动力学耦合在一起。使用移动网格有限元方法对模型进行数值处理(Madzvamuse等人,J Comput Phys 190:478-500,2003)。此外,通过假设单元的缓慢变形,我们使用线性稳定性理论来验证接近分叉点的数值模拟结果。远离分叉点,我们表明数学模型能够描述实验结果中通常观察到的复杂细胞变形。我们的数值结果说明了细胞扩增,细胞收缩,细胞翻译和细胞重定位以及细胞突起。在所有这些结果中,肌动蛋白丝与肌球蛋白II运动蛋白缔合形成的收缩张力被确定为关键的分叉参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号