首页> 外文期刊>Journal of Materials Science >In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon
【24h】

In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to David Brandon

机译:原位TEM纳米压痕和位错-晶界相互作用:向David Brandon致敬

获取原文
获取原文并翻译 | 示例
           

摘要

As a tribute to the scientific work of Professor David Brandon, this paper delineates the possibilities of utilizing in situ transmission electron microscopy to unravel dislocation-grain boundary interactions. In particular, we have focused on the deformation characteristics of Al-Mg films. To this end, in situ nanoindentation experiments have been conducted in TEM on ultrafine-grained Al and Al-Mg films with varying Mg contents. The observed propagation of dislocations is markedly different between Al and Al-Mg films, i.e. the presence of solute Mg results in solute drag, evidenced by a jerky-type dislocation motion with a mean jump distance that compares well to earlier theoretical and experimental results. It is proposed that this solute drag accounts for the difference between the load-controlled indentation responses of Al and Al-Mg alloys. In contrast to Al-Mg alloys, several yield excursions are observed during initial indentation of pure Al, which are commonly attributed to the collective motion of dislocations nucleated under the indenter. Displacement-controlled indentation does not result in a qualitative difference between Al and Al-Mg, which can be explained by the specific feedback characteristics providing a more sensitive detection of plastic instabilities and allowing the natural process of load relaxation to occur. The in situ indentation measurements confirm grain boundary motion as an important deformation mechanism in ultrafine-grained Al when it is subjected to a highly inhomogeneous stress field as produced by a Berkovich indenter. It is found that solute Mg effectively pins high-angle grain boundaries during such deformation. The mobility of low-angle boundaries is not affected by the presence of Mg.
机译:为了向David Brandon教授的科学工作致敬,本文描述了利用原位透射电子显微镜揭示位错-晶界相互作用的可能性。特别地,我们集中于Al-Mg膜的变形特性。为此,已经在TEM中对Mg含量变化的超细晶粒Al和Al-Mg薄膜进行了原位纳米压痕实验。在Al和Al-Mg薄膜之间观察到的位错传播明显不同,即溶质Mg的存在会导致溶质阻力,这是由具有平均跳跃距离的生涩型位错运动所证明的,该运动与早期的理论和实验结果相比较很好。提出该溶质阻力解释了Al和Al-Mg合金的载荷控制的压痕响应之间的差异。与Al-Mg合金相比,在纯Al的初始压痕过程中观察到了一些屈服偏差,这通常归因于在压头下成核的位错的集体运动。位移控制的压痕不会在Al和Al-Mg之间产生质量上的差异,这可以通过特定的反馈特性来解释,从而可以更灵敏地检测塑性不稳定性,并可以自然地进行载荷松弛过程。原位压痕测量证实,当其受到Berkovich压头产生的高度不均匀应力场时,晶界运动是超细晶粒Al中的重要变形机制。发现在这种变形过程中,固溶镁有效地钉扎了大角度晶界。低角度边界的迁移率不受镁的存在的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号