首页> 外文学位 >In situ TEM studies of deformation mechanisms in nanoindentation of ultrafine-grained and nanocrystalline metals.
【24h】

In situ TEM studies of deformation mechanisms in nanoindentation of ultrafine-grained and nanocrystalline metals.

机译:原位TEM研究超细晶粒和纳米晶金属纳米压痕的变形机理。

获取原文
获取原文并翻译 | 示例

摘要

The mechanical properties of ultrafine-grained and nanocrystalline materials have received a great deal of recent attention because of their unusual and promising values. However, some of the most important mechanisms of deformation remain unclear. To address this issue, an in situ nanoindentation stage has been used in a transmission electron microscope to explore the deformation behaviors of nanocrystalline aluminum, ultrafine-grained aluminum, and ultrafine-grained iron in real time.; The special in situ indentation stage contains a Berkovich-type diamond indenter which can be coarsely actuated by a 3-axis screw-positioner and by a piezoelectric ceramic crystal for fine positioning actual indentation. Two methods are used to fabricate samples that are electron transparent, accessible to the indenter and mechanically stable. In one method, polygranular aluminum films are deposited on wedge-shaped silicon substrates so that the film above the wedge tip is transparent. The grain size of the film can be controlled by adjusting the deposition conditions. Alternatively, thin plates of iron are machined from bulk specimens by FIB.; In situ studies of nanocrystalline Al films were carried out under various diffraction conditions. Although it is difficult to image individual nanosized grains, the results suggest that strain is accommodated by grain boundary movement or, more interestingly, by strain-induced grain coarsening. In the ultrafine-grained Al films, strain-induced grain coarsening is also frequently observed during deformation at room temperature. The results show that the strain-induced coarsening is by normal grain growth (that is, by grain boundary migration), which may lead to a dramatic enhancement of the ductility. Strain-induced coarsening is more difficult to achieve in ultrafine-grained iron because of the much lower mobility of the grain boundaries. The lack of grain boundary motion in Fe is attributed to the pinning effect of nano-sized particles at the Fe grain boundaries.
机译:超细晶粒和纳米晶材料的机械性能因其非同寻常的价值而备受关注。但是,一些最重要的变形机制仍不清楚。为了解决这个问题,在透射电子显微镜中使用了原位纳米压痕台,以实时探索纳米晶铝,超细铝和超细铁的变形行为。特殊的原位压痕台包含一个Berkovich型金刚石压头,该压头可以通过3轴螺丝定位器和压电陶瓷晶体进行粗动,以精确定位实际压痕。有两种方法可用来制造电子透明,压头可触及且机械稳定的样品。在一种方法中,将多颗粒铝膜沉积在楔形硅衬底上,以使楔形尖端上方的膜是透明的。可以通过调节沉积条件来控制膜的晶粒尺寸。另外,FIB可以从散装样品中加工出铁薄板。在各种衍射条件下进行了纳米Al膜的原位研究。尽管很难对单个纳米晶粒进行成像,但结果表明,应变是通过晶界移动来适应的,或者更有趣的是,应变会导致晶粒的粗化。在超细晶粒的Al膜中,在室温下变形期间也经常观察到应变引起的晶粒粗化。结果表明,应变诱发的粗化是由于正常晶粒生长(即,由于晶界迁移)引起的,这可能导致塑性大幅度提高。由于晶粒边界的迁移率低得多,因此在超细晶粒铁中更难以实现应变诱导的粗化。 Fe中缺乏晶界运动是由于纳米颗粒在Fe晶界处的钉扎效应所致。

著录项

  • 作者

    Jin, Miao.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号