首页> 外文期刊>Journal of instrumentation: an IOP and SISSA journal >A fast, ultra-low and frequency-scalable power consumption, 10-bit SAR ADC for particle physics detectors
【24h】

A fast, ultra-low and frequency-scalable power consumption, 10-bit SAR ADC for particle physics detectors

机译:快速,超低且可频率缩放的功耗10位SAR ADC,用于粒子物理探测器

获取原文
获取原文并翻译 | 示例
       

摘要

The design and measurements results of a fast 10-bit SAR ADC with ultra-low and scalable with frequency power consumption, developed for readout systems for detectors at future particle physics colliders (ILC, CLIC, LHC Upgrade), are described. A prototype ASIC was designed and fabricated in 130 nm CMOS technology and a wide spectrum of static (INL.0.5 LSB, DN≤0.5 LSB) and dynamic (SINAD ~58 dB, ENOB~9.3) measurements was performed to study and quantify the ADC performance. The ADC works in wide 10 kS/s – 40 MS/s sampling frequency range, covering more than three orders of magnitude. In most of the range the power consumption scales linearly with sampling rate with a factor of about 22 μW/MS/s. A dynamic and asynchronous internal logic makes the ADC very well suited not only for commonly used synchronous sampling but also for applications with asynchronous sampling and/or the ones requiring power cycling, like the experiments at future linear collider (ILC/CLIC). The ADC layout is drawn with a small pitch of 146 μm to facilitate multi-channel integration. The obtained figure of Merit is in range 32-37 fJ/conversion for sampling frequencies 10-40 MS/s, placing the ADC among the best State of the Art designs with similar technology and specifications.
机译:描述了为未来粒子物理对撞机(ILC,CLIC,LHC升级版)的探测器读出系统开发的,具有超低和可扩展的频率功耗的快速10位SAR ADC的设计和测量结果。使用130 nm CMOS技术设计和制造了原型ASIC,并进行了宽范围的静态(INL.0.5 LSB,DN≤0.5LSB)和动态(SINAD〜58 dB,ENOB〜9.3)测量,以研究和量化ADC性能。 ADC的工作频率范围为10 kS / s – 40 MS / s,涵盖三个数量级以上。在大多数范围内,功耗与采样率成线性比例关系,约为22μW/ MS / s。动态和异步内部逻辑使ADC非常适合不仅用于常用的同步采样,而且还非常适合异步采样和/或需要功率循环的应用,例如未来线性对撞机(ILC / CLIC)的实验。 ADC布局以146μm的小间距绘制,以促进多通道集成。对于10-40 MS / s的采样频率,获得的品质因数在32-37 fJ /转换范围内,使ADC处于技术和规格相似的最佳最新设计之中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号