首页> 外文期刊>Journal of Industrial Ecology >Life Cycle-based Assessment of Energy Use and Greenhouse Gas Emissions in Almond Production, Part II: Uncertainty Analysis through Sensitivity Analysis and Scenario Testing
【24h】

Life Cycle-based Assessment of Energy Use and Greenhouse Gas Emissions in Almond Production, Part II: Uncertainty Analysis through Sensitivity Analysis and Scenario Testing

机译:基于生命周期的杏仁生产中的能源使用和温室气体排放评估,第二部分:通过敏感性分析和情景测试进行不确定性分析

获取原文
获取原文并翻译 | 示例
       

摘要

This is the second part of a two-article series examining California almond production. The part I article describes development of the analytical framework and life cycle-based model and presents typical energy use and greenhouse gas (GHG) emissions for California almonds. This part II article builds on this by exploring uncertainty in the life cycle model through sensitivity and scenario analysis, and by examining temporary carbon storage in the orchard. Sensitivity analysis shows life cycle GHG emissions are most affected by biomass fate and utilization, followed by nitrous oxide emissions rates from orchard soils. Model sensitivity for net energy consumption is highest for irrigation system parameters, followed by biomass fate and utilization. Scenario analysis shows utilization of orchard biomass for electricity production has the greatest potential effect, assuming displacement methods are used for co-product allocation. Results of the scenario analysis show that 1 kilogram (kg) of almond kernel and associated co-products are estimated to cause between -3.12 to 2.67 kg carbon dioxide equivalent (CO2-eq) emissions and consume between 27.6 to 52.5 megajoules (MJ) of energy. Co-product displacement credits lead to avoided emissions of between -1.33 to 2.45 kg CO2-eq and between -0.08 to 13.7 MJ of avoided energy use, leading to net results of -1.39 to 3.99kg CO2-eq and 15.3 to 52.6MJ per kg kernel (net results are calculated by subtracting co-product credits from the results for almonds and co-products). Temporary carbon storage in orchard biomass and soils is accounted for by using alternative global warming characterization factors and leads to a 14% to 18% reduction in CO2-eq emissions. Future studies of orchards and other perennial cropping systems should likely consider temporary carbon storage.
机译:这是研究加利福尼亚杏仁生产的两篇系列文章的第二部分。本文的第一部分描述了分析框架和基于生命周期的模型的开发,并介绍了加利福尼亚杏仁的典型能源使用和温室气体(GHG)排放。第二部分在此基础上,通过敏感性和情景分析探索生命周期模型中的不确定性,并检查果园中的临时碳存储。敏感性分析显示,生命周期温室气体排放受生物量的命运和利用影响最大,其次是果园土壤中的一氧化二氮排放率。对于灌溉系统参数,净能耗的模型敏感性最高,其次是生物量的确定和利用。情景分析表明,假设采用置换方法分配副产品,利用果园生物质发电将具有最大的潜在影响。情景分析结果表明,估计1千克(kg)的杏仁仁和相关副产品会导致-3.12至2.67千克二氧化碳当量(CO2-eq)的排放,消耗27.6至52.5兆焦耳(MJ)的二氧化碳。能源。副产品置换信用可避免-1.33至2.45 kg CO2-eq的排放量和-0.08至13.7 MJ的避免能源使用量,从而导致净结果为-1.39至3.99kg CO2-eq和15.3至52.6MJ kg内核(净结果是通过从杏仁和副产品的结果中减去副产品功劳来计算的)。果园生物量和土壤中的临时碳储存是通过使用替代性全球变暖特征因子来解决的,并导致CO2当量排放量减少14%至18%。今后对果园和其他多年生种植系统的研究应考虑临时碳存储。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号