首页> 外文期刊>Journal of Inorganic Biochemistry: An Interdisciplinary Journal >A systems biology approach to the blood-aluminium problem: The application and testing of a computational model
【24h】

A systems biology approach to the blood-aluminium problem: The application and testing of a computational model

机译:解决血铝问题的系统生物学方法:计算模型的应用和测试

获取原文
获取原文并翻译 | 示例
           

摘要

Transport and distribution of systemic aluminium are influenced by its interaction with blood. Current understanding is centred upon the role played by the iron transport protein transferrin which has been shown to bind up to 90% of serum total aluminium. We have coined what we have called the blood-aluminium problem which states that the proportion of serum aluminium which, at any one moment in time, is bound by transferrin is more heavily influenced by kinetic constraints than thermodynamic equilibria with the result that the role played by transferrin in the transport and distribution of aluminium is likely to have been over estimated. To begin to solve the blood-aluminium problem and therewith provide a numerical solution to the aforementioned kinetic constraints we have applied and tested a simple computational model of the time-dependency of a putative transferrin ligand (L) binding aluminium to form an Al-L complex with a probability of existence, K-E, between 0% (no complex) and 100% (complex will not dissociate). The model is based upon the principles of a lattice-gas automaton which when ran for K-E in the range 0.1-98.0% demonstrated the emergence of complex behaviour which could be defined in the terms of a set of parameters (equilibrium value, E-V, equilibrium time, E-T, peak value, P-V, peak time, P-T, area under curve, AUC) the values of which varied in a predictable way with K-E. When K-E was set to 98% the model predicted that ca. 90% of the total aluminium would be bound by transferrin within ca. 350 simulation timesteps. We have used a systems biology approach to develop a simple model of the time-dependency of the binding of aluminium by transferrin. To use this approach to begin to solve the blood-aluminium problem we shall need to increase the complexity of the model to better reflect the heterogeneity of a biological system such as the blood. (c) 2007 Elsevier Inc. All rights reserved.
机译:全身性铝与血液的相互作用会影响其运输和分布。目前的理解集中在铁转运蛋白转铁蛋白所起的作用,铁转铁蛋白已被证明可结合血清总铝的90%。我们创造了所谓的血液-铝问题,该问题指出,在任何时刻,受转铁蛋白结合的血清铝的比例受动力学约束的影响要大于对热力学平衡的影响,因此该作用起了作用转铁蛋白在铝的运输和分配中的作用可能被高估了。为了开始解决铝的血液问题,并由此为上述动力学约束提供了数值解决方案,我们已经应用并测试了一种简单的计算模型,该模型计算了铝与铝形成铝的假定的运铁蛋白配体(L)的时间依赖性。复杂度(KE)介于0%(无复杂度)和100%(复杂度不会解离)之间。该模型基于晶格气体自动机的原理,当在KE中运行0.1-98.0%时,表明出现了复杂的行为,可以根据一组参数(平衡值,EV,平衡时间,ET,峰值,PV,峰值时间,PT,曲线下面积,AUC),其值随着KE以可预测的方式变化。当K-E设定为98%时,模型预测约90%的铝将被转铁蛋白结合。 350个仿真时间步。我们已经使用系统生物学方法来开发转铁蛋白结合铝的时间依赖性的简单模型。为了使用这种方法来解决血液铝的问题,我们将需要增加模型的复杂度,以更好地反映诸如血液之类的生物系统的异质性。 (c)2007 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号