首页> 外文期刊>Journal of Inorganic Biochemistry: An Interdisciplinary Journal >How does the push/pull effect of the axial ligand influence the catalytic properties of Compound I of catalase and cytochrome P450?
【24h】

How does the push/pull effect of the axial ligand influence the catalytic properties of Compound I of catalase and cytochrome P450?

机译:轴向配体的推/拉效应如何影响过氧化氢酶化合物I和细胞色素P450的催化性能?

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Density functional theory (DFT) calculations on the chemoselective epoxidation versus hydroxylation reactions of propene by oxoiron porphyrin models mimicking the active sites of catalase, cytochrome P450 (P450) and horseradish peroxidase Compound I (CpdI) are presented. The catalase reactions are concerted and proceed via two-state reactivity patterns on competing doublet and quartet spin state surfaces, but the lowest barrier is the one leading to epoxide products on the doublet spin surface. The results are compared with earlier DFT studies of models of cytochrome P450, horseradish peroxide (HRP), taurine/alpha-ketoglutarate dioxygenase and some synthetic oxoiron catalysts. The catalase barriers are midway in between those obtained for HRP and P450 models, so that tyrosinate ligated heme systems should be able to catalyze C-H hydroxylation and C=C epoxidation reactions. We show that for heme systems the barrier height of epoxidation linearly correlates with the electron affinity of Compound I as expected from the electron transfer mechanism of the rate determining step. Our studies show that the axial ligand does not influence the chemoselectivity of a reaction but that it does regulate the barrier heights and rate constants. Finally, we estimated the effect of the axial ligand on the oxoiron group and derived that it contributes from a field effect due to the charge of the ligand and a quantum mechanical effect as a result of orbital mixing. In catalase, the major component is the field effect. while the quantum mechanical effect is negligible. This is in contrast to P450 CpdI, where both effects are of similar order of magnitude. (C) 2007 Elsevier Inc. All rights reserved.
机译:提出了通过模拟过氧化氢酶,细胞色素P450(P450)和辣根过氧化物酶化合物I(CpdI)活性位点的氧铁卟啉模型对丙烯进行化学选择性环氧化与羟基化反应的密度泛函理论(DFT)计算。过氧化氢酶反应是协调的,并通过竞争的双峰和四重旋自旋态表面上的两态反应模式进行,但最低的势垒是导致双峰自旋表面上形成环氧产物的屏障。将该结果与较早的DFT研究进行了比较,该研究对细胞色素P450,过氧化辣根(HRP),牛磺酸/α-酮戊二酸双加氧酶和某些合成的氧铁催化剂进行了模型研究。过氧化氢酶屏障介于HRP和P450模型获得的屏障之间,因此酪氨酸盐连接的血红素系统应能够催化C-H羟基化和C = C环氧化反应。我们表明,对于血红素系统,环氧化的势垒高度与化合物I的电子亲和力线性相关,正如速率确定步骤的电子转移机理所预期的那样。我们的研究表明,轴向配体不会影响反应的化学选择性,但会调节势垒高度和速率常数。最后,我们估算了轴向配体对氧代铁基团的影响,并推论出它是由于配体带电引起的场效应以及由于轨道混合而产生的量子力学效应。在过氧化氢酶中,主要成分是场效应。而量子力学效应可以忽略不计。这与P450 CpdI相反,后者的两种作用都具有相似的数量级。 (C)2007 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号