...
首页> 外文期刊>Journal of industrial microbiology & biotechnology >Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP(+)-dependent GapB from Bacillus subtilis and addition of NAD kinase
【24h】

Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP(+)-dependent GapB from Bacillus subtilis and addition of NAD kinase

机译:通过用枯草芽孢杆菌的NADP(+)依赖性GapB替代NAD(+)依赖性甘油醛-3-磷酸脱氢酶GapA并添加NAD激酶来改善大肠杆菌中NADPH的生物利用度

获取原文
获取原文并翻译 | 示例

摘要

Enzymatic synthesis of some industrially important compounds depends heavily on cofactor NADPH as the reducing agent. This is especially true in the synthesis of chiral compounds that are often used as pharmaceutical intermediates to generate the correct stereochemistry in bioactive products. The high cost and technical difficulty of cofactor regeneration often pose a challenge for such biocatalytic reactions. In this study, to increase NADPH bioavailability, the native NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gapA gene in Escherichia coli was replaced with a NADP(+)-dependent gapB from Bacillus subtilis. To overcome the limitation of NADP(+) availability, E. coli NAD kinase, nadK was also coexpressed with gapB. The recombinant strains were then tested in three reporting systems: biosynthesis of lycopene, oxidation of cyclohexanone with cyclohexanone monooxygenase (CHMO), and an anaerobic system utilizing 2-haloacrylate reductase (CAA43). In all the reporting systems, replacing NAD(+)-dependent GapA activity with NADP(+)-dependent GapB activity increased the synthesis of NADPH-dependent compounds. The increase was more pronounced when NAD kinase was also overexpressed in the case of the one-step reaction catalyzed by CAA43 which approximately doubled the product yield. These results validate this novel approach to improve NADPH bioavailability in E. coli and suggest that the strategy can be applied in E. coli or other bacterium-based production of NADPH-dependent compounds.
机译:某些工业上重要化合物的酶促合成在很大程度上取决于辅因子NADPH作为还原剂。在手性化合物的合成中尤其如此,手性化合物通常用作药物中间体,以在生物活性产品中产生正确的立体化学。辅因子再生的高成本和技术难度通常对这种生物催化反应构成挑战。在这项研究中,为增加NADPH的生物利用度,用枯草芽孢杆菌的NADP(+)依赖性gapB替代了大肠杆菌中的天然NAD(+)依赖性甘油醛-3-磷酸脱氢酶(GAPDH)gapA基因。为了克服NADP(+)可用性的局限性,大肠杆菌NAD激酶nadK也与gapB共表达。然后在三个报告系统中测试了重组菌株:番茄红素的生物合成,用环己酮单加氧酶(CHMO)氧化环己酮和利用2-卤代丙烯酸酯还原酶的厌氧系统(CAA43)。在所有报告系统中,用NADP(+)依赖性GapB活性代替NAD(+)依赖性GapA活性可增加NADPH依赖性化合物的合成。当在CAA43催化的一步反应的情况下NAD激酶也过表达时,这种增加更为明显,这大约使产物收率增加了一倍。这些结果证实了这种改善NADPH在大肠杆菌中生物利用度的新方法,并表明该策略可用于大肠杆菌或其他细菌的NADPH依赖性化合物的生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号