首页> 外文期刊>Journal of Hydrology >Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems
【24h】

Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems

机译:大规模地形降水的特征:理想化问题中线性模型的评估

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper investigates mechanisms underlying large-scale orographic precipitation and introduces global measures for assessing the relative importance of physical processes involved; including moisture advection, condensation, precipitation evolution and fallout. The measures proposed quantify the hydrological. cycle in mountainous terrain. The discriminating character of the measures is demonstrated in numerical simulations of idealized moist, warm air-flow over a mountain ridge. A series of experiments, with constant ambient wind and moist static stability uniform in the tower troposphere, is conducted for a range of thermodynamic parameters, such as surface temperature and relative humidity, and a range of heights and widths of the ridge. These calculations corroborate the classical picture of targe-scale precipitation falling on the windward side, for mountain ridges wider than about 15 km, given the observed prevailing wind. However, as the ridge width decreases below this threshold, the model results show that cloud water and hydrometeors are advected into the tee, where they evaporate in the descending flow. Overall, this reduces the total surface precipitation expected from the wide-ridge scenario. Furthermore, increasing the ridge height amplifies the precipitation due to enhanced condensation. Finally, raising the surface temperature tends to reduce the fraction of the incoming water vapor that turns into precipitation, primarily due to enhanced evaporation of hydrometeors. The measures derived discriminate the physical processes involved in many orographic precipitation scenarios. In particular, they were applied to test how well an elementary linear model predicts orographic precipitation compared to a fully nonlinear (viz. reference) simulation with an elaborate numerical code. The test results are encouraging, as they suggest that the linear model provides a valuable integral prediction, in spite of heavily abbreviated physics. (c) 2007 Elsevier B.V. All rights reserved.
机译:本文研究了大规模地形降水的潜在机制,并介绍了评估所涉及物理过程相对重要性的全球措施;包括对流,凝结,降水演变和沉降。建议采取的措施将水文量化。在山区地形中循环。这些措施的区别性特征在山脊上理想的湿热气流的数值模拟中得到了证明。针对一系列热力学参数(例如表面温度和相对湿度)以及一系列脊的高度和宽度,进行了一系列实验,这些实验在塔对流层中具有恒定的环境风和潮湿的静态稳定性,且均匀。这些计算证实了在观测到的盛行风的情况下,对于宽于约15 km的山脊而言,迎风面降落的目标规模降水的经典图景。但是,当山脊宽度减小到该阈值以下时,模型结果表明,云水和水凝物被平流到T型管中,并在其中以下降流的形式蒸发。总体而言,这减少了宽脊情景中预期的总地表降水。而且,由于增强的冷凝作用,增加脊的高度会放大沉淀。最后,升高表面温度往往会减少进入的水蒸气变成沉淀的比例,这主要是由于增加了水凝物的蒸发。得出的测量结果可以区分许多地形降水情景中涉及的物理过程。特别是,它们被用来测试基本线性模型与具有详尽数字代码的完全非线性(即参考)仿真相比,预测地形降水的效果如何。测试结果令人鼓舞,因为尽管物理简化了很多,但它们表明线性模型提供了有价值的积分预测。 (c)2007 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号