首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >The role of rheology and slab shape on rapid mantle flow: Three-dimensional numerical models of the Alaska slab edge
【24h】

The role of rheology and slab shape on rapid mantle flow: Three-dimensional numerical models of the Alaska slab edge

机译:流变学和平板形状对快速地幔流动的作用:阿拉斯加平板边缘的三维数值模型

获取原文
获取原文并翻译 | 示例
       

摘要

Away from subduction zones, the surface motion of oceanic plates is well correlated with mantle flow direction, as inferred from seismic anisotropy. However, this correlation breaks down near subduction zones, where shear wave splitting studies suggest the mantle flow direction is spatially variable and commonly non-parallel to plate motions. This implies local decoupling of mantle flow from surface plate motions, yet the magnitude of this decoupling is poorly constrained. We use 3D numerical models of the eastern Alaska subduction-transform plate boundary system to further explore this decoupling, in terms of both direction and magnitude. Specifically, we investigate the role of the slab geometry and rheology on the mantle flow velocity at a slab edge. The subducting plate geometry is based on Wadati-Benioff zone seismicity and tomography, and the 3D thermal structure for both the subducting and overriding plates, is constrained by geologic and geophysical observations. In models using the composite viscosity, a laterally variable mantle viscosity emerges as a consequence of the lateral variations in the mantle flow and strain rate. Spatially variable mantle velocity magnitudes are predicted, with localized fast velocities (greater than 80 cm/yr) close to the slab where the negative buoyancy of the slab drives the flow. The same models produce surface plate motions of less than 10 cm/yr, comparable to observed plate motions. These results show a power law rheology, i.e., one that includes the effects of the dislocation creep deformation mechanism, can explain both observations of seismic anisotropy and decoupling of mantle flow from surface motion.
机译:距俯冲带很远,大洋板块的表面运动与地幔流动方向具有很好的相关性,这是由地震各向异性得出的。然而,这种相关性在俯冲带附近破裂,剪切波分裂研究表明,地幔流动方向在空间上是可变的,通常与板块运动不平行。这暗示着地幔流与平台运动的局部解耦,但是这种解耦的幅度很难受到约束。我们使用阿拉斯加东部俯冲-转换板块边界系统的3D数值模型,从方向和幅度上进一步探讨了这种解耦。具体来说,我们研究了平板几何形状和流变学对平板边缘地幔流速的影响。俯冲板的几何形状基于Wadati-Benioff区的地震活动性和层析成像技术,俯冲板和上覆板的3D热结构都受到地质和地球物理观测的限制。在使用复合粘度的模型中,由于地幔流动和应变速率的横向变化,出现了横向可变的地幔粘度。可以预测出空间变化的地幔速度大小,靠近板坯的局部快速速度(大于80 cm / yr),板坯的负浮力驱动水流。相同的模型产生的表面板运动小于10 cm / yr,与观察到的板运动相当。这些结果表明,幂律流变学,即包括位错蠕变变形机理的影响,既可以解释地震各向异性的观测结果,又可以解释地幔流动与地表运动的解耦。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号