首页> 外文期刊>Journal of geophysical research. Solid earth: JGR >Strike-slip fault terminations at seismogenic depths: The structure and kinematics of the Glacier Lakes fault, Sierra Nevada United States
【24h】

Strike-slip fault terminations at seismogenic depths: The structure and kinematics of the Glacier Lakes fault, Sierra Nevada United States

机译:地震成因深度的走滑断层终端:美国内华达山脉冰川湖断层的结构和运动学

获取原文
获取原文并翻译 | 示例
       

摘要

Structural complexity is common at the terminations of earthquake surface ruptures; similar deformation may therefore be expected at the end zones of earthquake ruptures at depth. The 8.2 km long Glacier Lakes fault (GLF) in the Sierra Nevada is a left-lateral strike-slip fault with a maximum observed displacement of 125 m. Within the fault, pseudotachylytes crosscut cataclasites, showing that displacement on the GLF was accommodated at least partly by seismic slip. The western termination of the GLF is defined by a gradual decrease in the displacement on the main fault, accompanied by a 1.4 km wide zone of secondary faulting in the dilational quadrant of the GLF. The secondary faults splay counterclockwise from the main fault trace forming average angles of 39° with the main fault. Slip vectors defined by slickenlines plunge more steeply west for these splay faults than for the GLF. Static stress transfer modeling shows that the orientations of the splays, and the plunge of displacement on those splays, are consistent with displacement on the main fault. The GLF termination structure shows that structural complexity is present at the terminations of faults at seismogenic depths and therefore ruptures that propagate beyond fault terminations, or through step overs between two faults, will likely interact with complex secondary fault structures. Models of dynamic rupture propagation must account for the effect of preexisting structures on the elastic properties of the host rock. Additionally, aftershock distributions and focal mechanisms may be controlled by the geometry and kinematics of structures present at fault terminations.
机译:在地震地表破裂的终止处,结构复杂性很普遍。因此,在深处地震破裂的末端区域可能会发生类似的变形。内华达山脉长8.2 km的冰川湖断层(GLF)是左旋走滑断层,最大观测位移为125 m。在断层内部,假速溶物横切了凯斯特岩,表明GLF上的位移至少部分被地震滑动所适应。 GLF的西端是由主断层上位移的逐渐减小所定义的,并伴随着GLF扩张象限中次生断层的1.4 km宽带。次生断层从主断层迹线逆时针张开,与主断层形成平均39°角。与GLF相比,由滑动线定义的滑移矢量对于这些扩张断层向西更陡峭地下降。静应力传递模型表明,张架的方向以及这些张架上的位移骤降与主断层上的位移一致。 GLF终端结构表明,在地震发生深度的断层终端处存在结构复杂性,因此,延伸到断层终端之外或通过两个断层之间的阶跃传播的破裂可能会与复杂的次生断层结构相互作用。动态破裂传播模型必须考虑到既有结构对基质岩石弹性特性的影响。另外,余震分布和震源机制可以由断层终端处存在的结构的几何学和运动学控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号