首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >LINE-BY-LINE CALCULATION OF ATMOSPHERIC FLUXES AND COOLING RATES .2. APPLICATION TO CARBON DIOXIDE, OZONE, METHANE, NITROUS OXIDE AND THE HALOCARBONS
【24h】

LINE-BY-LINE CALCULATION OF ATMOSPHERIC FLUXES AND COOLING RATES .2. APPLICATION TO CARBON DIOXIDE, OZONE, METHANE, NITROUS OXIDE AND THE HALOCARBONS

机译:大气流量和冷却速率的逐行计算2。应用于二氧化碳,臭氧,甲烷,一氧化二氮和卤代烃

获取原文
获取原文并翻译 | 示例
           

摘要

A line-by-line model (LBLRTM) has been applied to the calculation of clearsky longwave fluxes and cooling rates for atmospheres including CO2, O-3, CH4, N2O, CCl4, CFC-11, CFC-12, and CFC-22 in addition to water vapor. The present paper continues the approach developed in an earlier article in which the radiative properties of atmospheres with water vapor alone were reported. Tropospheric water vapor continues to be of principal importance for the longwave region due to the spectral extent of its absorbing properties, while the absorption bands of other trace species have influence over limited spectral domains. The principal effects of adding carbon dioxide are to reduce the role of the water vapor in the lower troposphere and to provide 72% of the 13.0 K d(-1) cooling rate at the stratopause. In general, the introduction of uniformly mixed trace species into atmospheres with significant amounts of water vapor has the effect of reducing the cooling associated with water vapor, providing an apparent net atmospheric heating. The radiative consequences of doubling carbon dioxide from the present level are consistent with these results. For the midlatitude summer atmosphere the heating associated with ozone that occurs from 500 to 20 mbar reaches a maximum of 0.25 K d(-1) at 50 mbar and partially offsets the cooling of 1.0 K d(-1) contributed by H2O and CO2 at this level. In the stratosphere the 704 cm(-1) band of ozone, not included in many radiation models, contributes 25% of the ozone cooling rate. Radiative effects associated with anticipated 10-year constituent profile changes, 1990-2000, are presented from both a spectral and spectrally integrated perspective. The effect of the trace gases has been studied for three atmospheres: tropical, midlatitude summer, and midlatitude winter. Using these results and making a reasonable approximation for the polar regions, we obtain a value for the longwave flux at the top of the atmosphere of 265.5 W m(-2), in close agreement with the clear-sky Earth Radiation Budget Experiment (ERBE) observations. This agreement provides strong support for the present approach as a reference method for the study of radiative effects resulting from changes in the distributions of trace species on global radiative forcing. Many of the results from the spectral calculations reported here are archived at the Carbon Dioxide Information and Analysis Center for use by the community. [References: 22]
机译:逐行模型(LBLRTM)已用于计算包括CO2,O-3,CH4,N2O,CCl4,CFC-11,CFC-12和CFC-22在内的大气的晴空长波通量和冷却速率除了水蒸气。本文继续了在较早的文章中开发的方法,其中报道了仅含水蒸气的大气的辐射特性。对流层水蒸气由于其吸收特性的光谱范围而对长波区域仍然是最重要的,而其他微量物质的吸收带对有限的光谱域有影响。添加二氧化碳的主要作用是减少对流层较低层中水蒸气的作用,并在平流层顶提供13.0 K d(-1)冷却速率的72%。通常,将均匀混合的痕量物质引入具有大量水蒸气的大气中具有减少与水蒸气有关的冷却的作用,从而提供明显的净大气加热。从目前的水平将二氧化碳增加一倍的辐射后果与这些结果一致。对于中纬度夏季大气,与臭氧相关的加热(从500到20 mbar)在50 mbar时达到最大0.25 K d(-1),并部分抵消了H2O和CO2在1.05 d(-1)的冷却作用。这个水平。在平流层中,许多辐射模型未包括的704 cm(-1)臭氧带贡献了25%的臭氧冷却速率。从光谱和光谱综合的角度介绍了与预期的十年成分变化(1990-2000年)相关的辐射效应。在三种大气中研究了微量气体的影响:热带,中纬度夏季和中纬度冬季。使用这些结果并为两极地区做出合理的近似,我们得出的大气层顶部的长波通量值为265.5 W m(-2),与晴朗的地球辐射预算实验(ERBE)紧密一致)观察。该协议为目前的方法提供了有力的支持,可作为研究痕量物种分布变化对全球辐射强迫产生的辐射效应的参考方法。此处报告的光谱计算得出的许多结果都存储在二氧化碳信息和分析中心,以供社区使用。 [参考:22]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号