首页> 外文期刊>Journal of Geophysical Research. Biogeosciences >Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings
【24h】

Discrepancies between model-calculated and observed shortwave atmospheric absorption in areas with high aerosol loadings

机译:在高气溶胶负荷区域中模型计算的和观测到的短波大气吸收之间的差异

获取原文
获取原文并翻译 | 示例
           

摘要

Model calculations of absorption of solar radiation in the atmosphere are afflicted with large uncertainties. In many current general circulation models (GCMs) the atmosphere is too transparent to solar radiation. Collocated surface and satellite observations indicate that the underestimation of shortwave atmospheric absorption in these models is most pronounced in low-latitude areas, typically of the order of 20-40 W m~(-2). The present study focuses on one of these areas (equatorial Africa) to investigate the biases in three GCMs and in a model in assimilation mode (European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis). The underestimation of atmospheric shortwave absorption by these models is found to be particularly evident in areas and seasons with large aerosol loadings from extensive vegetation fires. This indicates that the crude aerosol climatologies typically used in current GCMs and reanalyses do not properly account for these effects. The lack of absorbing aerosols may be responsible for biases of up to 30 W m~(-2) regionally and seasonally in the GCM surface and atmospheric shortwave budgets. For a more realistic simulation of the radiation budget in these regions, an adequate spatial and temporal representation of aerosol absorption is therefore crucial. No indications for a significant underestimation of cloud absorption in the GCMs are found. The remaining underestimation of shortwave absorption in the tropical GCM atmosphere, not attributable to the lack of aerosol, may rather be due to underestimation of water vapor amount and deficiencies in the clear-sky radiative transfer calculations. The ECMWF reanalysis is significantly improved in these latter respects and is shown to compare favorably with the observed estimates of atmospheric absorption on annual mean scales. However, compensational effects between underestimated aerosol absorption and spurious cloud absorption may favor this agreement. On seasonal scales the compensational effects no longer apply, and peak biases similar to the GCMs become apparent, due to the lack of an adequate, seasonally resolved aerosol climatology.
机译:大气中太阳辐射吸收的模型计算存在很大的不确定性。在许多当前的通用循环模型(GCM)中,大气层对太阳辐射而言过于透明。地表和卫星观测的并置表明,在低纬度地区,这些模型中对短波大气吸收的低估最为明显,通常约为20-40 W m〜(-2)。本研究集中于这些地区之一(赤道非洲),以同化模式(欧洲中距离天气预报中心(ECMWF)重新分析)调查三个GCM和模型中的偏差。发现这些模型对大气短波吸收的低估在广泛植被火灾引起的大量气溶胶负荷的地区和季节尤为明显。这表明当前GCM和再分析中通常使用的粗气溶胶气候无法正确解释这些影响。缺乏吸收性气溶胶可能是造成GCM地表和大气短波预算的区域和季节偏差高达30 W m〜(-2)的原因。为了更真实地模拟这些区域的辐射预算,因此至关重要的是要有足够的时空表示气溶胶吸收能力。没有发现明显低估了GCM中云吸收的迹象。热带GCM大气中剩余的对短波吸收的低估可能并非归因于气溶胶的缺乏,而可能归因于水汽含量的低估和晴空辐射传输计算的不足。在这些方面,ECMWF的再分析得到了显着改善,并且与按年均尺度观察到的大气吸收估算值相比,具有明显优势。但是,被低估的气溶胶吸收量与杂散云吸收量之间的补偿效应可能会有利于达成这一协议。在季节性尺度上,补偿效应不再适用,并且由于缺乏足够的,季节性分解的气溶胶气候学,与GCM相似的峰值偏差变得明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号