首页> 外文期刊>Diffusion and Defect Data. Solid State Data, Part B. Solid State Phenomena >Influence of rolling reduction, strip shape and asymmetry factor on the strip curvature
【24h】

Influence of rolling reduction, strip shape and asymmetry factor on the strip curvature

机译:轧制压下率,带材形状和不对称因素对带材曲率的影响

获取原文
获取原文并翻译 | 示例
       

摘要

In order to improve the quality of plates, an asymmetric rolling process can be introduced, which will help reduce the total roll separating force and increase plate flatness and decrease thickness deviations along the width and length of rolled strip [1÷3]. By introducing asymmetric rolling, a disturbance of the equilibrium in the roll gap occurs, which changes the lengths of particular zones and the position of the neutral zone on each roll's side. A negative effect of this process might be bending of the strip beyond the roll gap, which can make it difficult to run the rolling process in a failure-free manner. The application of the asymmetric rolling technology under industrial conditions requires therefore a lot of theoretical research to be carried out in order to determine the permissible ranges of asymmetry factors, with the remaining process parameters being variable, for which a strip either being perfectly flat or having only a slight curvature will be obtained. Within this study, the effect of the strip shape factor, h0/D, on the magnitude of strip curvature on exit from the deformation zone has been determined. Many authors hold the view that one of the most important parameters influencing the strip curvature magnitude is the roll gap shape factor, ld/hav [4]. From tests carried out it has been found that the influence of the ld/hav factor is ambiguous. For different strip shape values and the same values of the roll gap shape factor, different magnitudes of strip curvature on exist from the deformation zone are obtained. The tests were carried out for steel S355J2G3. To determine the actual work-hardening curves of the S355J2G3 steel for the deformation conditions and temperatures prevailing in the real plate rolling process, the Gleeble 3800 device was used. Then, the work-hardening curves, determined for this steel grade, were implemented in the material database of the FORGE 2008? program [5].
机译:为了提高板的质量,可以采用非对称轧制工艺,这将有助于减小总的轧辊分离力并增加板的平直度,并减小沿轧制钢带的宽度和长度的厚度偏差[1÷3]。通过引入非对称轧制,轧辊间隙中的平衡发生紊乱,这会改变特定区域的长度以及每个轧辊侧中性区域的位置。该过程的负面影响可能是带材弯曲超过轧辊间隙,这可能导致难以以无故障方式进行轧制过程。因此,不对称轧制技术在工业条件下的应用需要进行大量的理论研究,以确定不对称因素的允许范围,而其余工艺参数是可变的,为此,带材要么是完全平坦的,要么具有仅会获得轻微的曲率。在这项研究中,已经确定了带钢形状因子h0 / D对带钢弯曲度从变形区出口的影响。许多作者认为,影响带材曲率幅度的最重要参数之一是辊缝形状因子ld / hav [4]。从进行的测试中发现,ld / hav因子的影响是模棱两可的。对于不同的带材形状值和相同的辊缝形状因子值,从变形区获得的带材曲率的大小存在不同。对S355J2G3钢进行了测试。为了确定S355J2G3钢在实际轧制过程中普遍存在的变形条件和温度下的实际加工硬化曲线,使用了Gleeble 3800设备。然后,针对该钢种确定的加工硬化曲线在FORGE 2008?的材料数据库中实现。程序[5]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号