...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere
【24h】

Extended magnetohydrodynamics with embedded particle-in-cell simulation of Ganymede's magnetosphere

机译:带有木卫三磁层内嵌粒子模拟的扩展磁流体动力学

获取原文
获取原文并翻译 | 示例

摘要

We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHD-EPIC) algorithm is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the interaction between Jupiter's magnetospheric plasma and Ganymede's magnetosphere. We compare the MHD-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the importance of kinetic effects in controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHD-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular, the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHD-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-D structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHD-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
机译:我们最近开发了一种新的建模功能,可以将隐式单元中粒子(PIC)模型iPIC3D嵌入到块自适应树-太阳风-鱼子风-逆风式磁流体动力学(MHD)模型中。具有嵌入式PIC域的MHD(MHD-EPIC)算法是一种双向耦合的动力学流体模型。作为MHD-EPIC算法的最早应用之一,我们模拟了木星的磁层等离子体与木卫三的磁层之间的相互作用。我们将MHD-EPIC模拟与纯Hall MHD模拟进行比较,并将两个模型结果与Galileo观测结果进行比较,以评估动力学效应在控制Ganymede磁层的构造和动力学中的重要性。我们发现霍尔MHD和MHD-EPIC解决方案在质量上相似,但是数量上存在显着差异。特别是,磁层内部的密度和压力显示出不同的分布。对于我们的基准网格分辨率,PIC解决方案比Hall MHD仿真更具动态性,并且与Galileo磁测量相比,它比Hall MHD解决方案要好得多。对于MHD-EPIC模型,观察到的和模拟的磁场波动的功率谱非常吻合。 MHD-EPIC模拟还产生了一些磁通转移事件(FTE),这些事件的磁信号与观察到的事件非常相似。模拟表明,FTE经常表现出复杂的3-D结构,其方向在赤道平面和伽利略轨道之间显着变化,这解释了在停磁跨越期间观察到的磁特征。 MHD-EPIC模拟的计算成本仅是Hall MHD模拟的4倍多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号