...
首页> 外文期刊>Journal of Geophysical Research, A. Space Physics: JGR >Three-dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusionmodels for chorus, plasmaspheric hiss, and lightning-generated whistlers
【24h】

Three-dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusionmodels for chorus, plasmaspheric hiss, and lightning-generated whistlers

机译:使用BAS辐射带模型对三维电子辐射带进行仿真,并使用新的扩散模型处理合唱团,等离子球嘶嘶声和闪电产生的吹口哨

获取原文
获取原文并翻译 | 示例
           

摘要

The flux of relativistic electrons in the Earth’s radiation belts is highly variable and can change by orders of magnitude on timescales of a few hours. Understanding the drivers for these changes is important as energetic electrons can damage satellites. We present results from a new code, the British Antarctic Survey (BAS) Radiation Belt model, which solves a 3-D Fokker-Planck equation, following a similar approach to the Versatile Electron Radiation Belt (VERB) code, incorporating the effects of radial diffusion, wave-particle interactions, and collisions. Whistler mode chorus waves, plasmaspheric hiss, and lightning-generated whistlers (LGW) are modeled using new diffusion coefficients, calculated by the Pitch Angle and Energy Diffusion of Ions and Electrons (PADIE) code, with new wave models based on satellite data that have been parameterized by both the AE and Kp indices. The model for plasmaspheric hiss and LGW includes variation in the wave-normal angle distribution of the waves with latitude. Simulations of 100 days from the CRRES mission demonstrate that the inclusion of chorus waves in the model is needed to reproduce the observed increase in MeV flux during disturbed conditions. The model reproduces the variation of the radiation belts best when AE, rather than Kp, is used to determine the diffusion rates. Losses due to plasmaspheric hiss depend critically on the the wave-normal angle distribution; a model where the peak of the wave-normal angle distribution depends on latitude best reproduces the observed decay rates. Higher frequency waves (~ 1–2 kHz) only make a significant contribution to losses for L? < 3 and the highest frequencies (2–5 kHz), representing LGW, have a limited effect on MeV electrons for 2 < L? < 5.5.
机译:相对论电子在地球辐射带中的通量是高度可变的,在几个小时的时间范围内可能会变化几个数量级。了解这些变化的驱动因素很重要,因为高能电子会损坏卫星。我们提供了新代码的结果,即英国南极勘测(BAS)辐射带模型,它采用与通用电子辐射带(VERB)代码类似的方法,并结合了径向辐射的影响,从而解决了3-D Fokker-Planck方程。扩散,波粒相互作用和碰撞。惠斯勒模式合唱波,等离子球嘶嘶声和雷电产生的吹口哨(LGW)使用新的扩散系数建模,该扩散系数是通过俯仰角和离子和电子的能量扩散(PADIE)码计算的,而新的波动模型则基于卫星数据,由AE和Kp指数参数化。等离子球的嘶嘶声和LGW模型包括随纬度变化的波的法线角度分布的变化。 CRRES任务进行的100天模拟表明,需要在模型中包含合唱波,以重现观察到的扰动条件下MeV通量的增加。当使用AE而不是Kp来确定扩散速率时,该模型可以最好地再现辐射带的变化。由于等离子层嘶嘶声引起的损耗主要取决于波法线角度分布。波法向角分布的峰值取决于纬度的模型可以最好地再现观察到的衰减率。较高频率的波(约1-2 kHz)仅对L?的损耗有很大贡献。 <3,代表LGW的最高频率(2–5 kHz)对MeV电子的影响<2L。 <5.5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号