首页> 外文期刊>Journal of Fluids and Structures >Dynamic coupling of fluid and structural mechanics for simulating particle motion and interaction in high speed compressible gas particle laden flow
【24h】

Dynamic coupling of fluid and structural mechanics for simulating particle motion and interaction in high speed compressible gas particle laden flow

机译:流体和结构力学的动态耦合,以模拟高速可压缩气体颗粒流中的颗粒运动和相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, structural finite element analyses of particles moving and interacting within high speed compressible flow are directly coupled to computational fluid dynamics and heat transfer analyses to provide more detailed and improved simulations of particle laden flow under these operating conditions. For a given solid material model, stresses and displacements throughout the solid body are determined with the particle-particle contact following an element to element local spring force model and local fluid induced forces directly calculated from the finite volume flow solution. Plasticity and particle deformation common in such a flow regime can be incorporated in a more rigorous manner than typical discrete element models where structural conditions are not directly modeled. Using the developed techniques, simulations of normal collisions between two I mm radius particles with initial particle velocities of 50-150 m/s are conducted with different levels of pressure driven gas flow moving normal to the initial particle motion for elastic and elastic-plastic with strain hardening based solid material models. In this manner, the relationships between the collision velocity, the material behavior models, and the fluid flow and the particle motion and deformation can be investigated. The elastic-plastic material behavior results in post collision velocities 16-50% of their precollision values while the elastic-based particle collisions nearly regained their initial velocity upon rebound. The elastic-plastic material models produce contact forces less than half of those for elastic collisions, longer contact times, and greater particle deformation. Fluid flow forces affect the particle motion even at high collision speeds regardless of the solid material behavior model. With the elastic models, the collision force varied little with the strength of the gas flow driver. For the elastic-plastic models, the larger particle deformation and the resulting increasingly asymmetric loading lead to growing differences in the collision force magnitudes and directions as the gas flow strength increased. The coupled finite volume flow and finite element structural analyses provide a capability to capture the interdependencies between the interaction of the particles, the particle deformation, the fluid flow and the particle motion. Published by Elsevier Ltd.
机译:在这项工作中,对在高速可压缩流中运动和相互作用的粒子的结构有限元分析直接与计算流体动力学和传热分析耦合,以提供在这些操作条件下更详细和改进的载有粒子的流的模拟。对于给定的固体材料模型,通过遵循单元到单元局部弹簧力模型和直接从有限体积流解中直接计算出的局部流体感应力的颗粒间接触,确定整个固体的应力和位移。与典型的不直接模拟结构条件的离散单元模型相比,在这种流动状态下常见的可塑性和颗粒变形可以更严格的方式被并入。使用已开发的技术,在不同水平的压力驱动气流垂直于初始粒子运动运动的情况下,对初始直径为50-150 m / s的两个直径为1 mm半径的粒子之间的正常碰撞进行了模拟,基于应变硬化的固体材料模型。以这种方式,可以研究碰撞速度,材料行为模型以及流体流动与粒子运动和变形之间的关系。弹塑性材料的行为会导致碰撞后速度达到其碰撞前值的16-50%,而基于弹性的粒子碰撞在反弹时几乎恢复了其初始速度。弹塑性材料模型产生的接触力小于弹性碰撞的接触力的一半,更长的接触时间和更大的颗粒变形。流体流动力即使在高碰撞速度下也会影响粒子运动,而与固体材料行为模型无关。使用弹性模型,碰撞力随气流驱动器的强度变化很小。对于弹塑性模型,随着气流强度的增加,较大的颗粒变形和随之而来的越来越不对称的载荷导致碰撞力大小和方向的差异越来越大。耦合的有限体积流和有限元结构分析提供了捕获粒子相互作用,粒子变形,流体流动和粒子运动之间的相互依赖性的能力。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号