...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Coupling of rigid body dynamics and moving particle semi-implicit method for simulating isothermal multi-phase fluid interactions
【24h】

Coupling of rigid body dynamics and moving particle semi-implicit method for simulating isothermal multi-phase fluid interactions

机译:模拟等温多相流体相互作用的刚体动力学与运动粒子半隐式耦合

获取原文
获取原文并翻译 | 示例
           

摘要

The moving particle semi-implicit (MPS) method does not require grids for simulating fluid motions. Therefore, the MPS method can easily handle a large deformation of fluid. However, the MPS method has some difficulties in simulating transfer of momentum caused by a physical collision between differ-ent fluids because fluid particles have no mass or volume and only have weights for interacting with other particles. To overcome this inherent defect of the MPS method, rigid body dynamics is explicitly coupled with the MPS method in this study. In the first step, the MPS calculation is performed with par-ticles which are considered to have no mass or volume. In the second step, rigid body dynamics comes into the calculation and considers the particles to have a slightly lesser diameter than the initial distance between particles. Then, physical contacts between particles are simulated with the dynamic energy con-served while the incompressibility of fluids is effectively maintained. In the single fluid region, the cou-pled method deals with the behavior of the particles. For the interface of the different fluids, only rigid body dynamics is used to simulate the transfer of the momentum caused by physical collisions of fluids. Through this coupling of rigid body dynamics and the MPS method, the overall stability related with the incompressibility of a fluid is comparatively increased in the single-phase fluid simulation. For the calcu-lation of the multi-phase fluids behavior, fluids interactions can be easily treated with improving stability of the MPS calculation. In this study, collapse of water column and the isothermal fuel-coolant interac-tion (FCI), in which a water jet is directed into a denser fluid pool, were simulated to validate the coupling method of the MPS method and rigid body dynamics.
机译:运动粒子半隐式(MPS)方法不需要网格来模拟流体运动。因此,MPS方法可以轻松应对流体的大变形。但是,MPS方法在模拟由不同流体之间的物理碰撞引起的动量传递时会遇到一些困难,因为流体粒子没有质量或体积,并且仅具有与其他粒子相互作用的权重。为了克服MPS方法的固有缺陷,本研究将刚体动力学与MPS方法明确结合。第一步,使用被认为没有质量或体积的粒子进行MPS计算。第二步,计算刚体动力学,并认为粒子的直径略小于粒子之间的初始距离。然后,利用保持的动态能量模拟粒子之间的物理接触,同时有效地保持流体的不可压缩性。在单个流体区域中,coupled方法处理粒子的行为。对于不同流体的界面,仅使用刚体动力学来模拟由流体物理碰撞导致的动量传递。通过刚体动力学与MPS方法的这种耦合,与流体不可压缩性相关的整体稳定性在单相流体模拟中得到了相对提高。对于多相流体行为的计算,可以通过提高MPS计算的稳定性轻松地处理流体相互作用。在这项研究中,模拟了水柱的塌陷和等温燃料-冷却剂相互作用(FCI),在该过程中,水射流被引导到更稠密的流体池中,以验证MPS方法与刚体动力学的耦合方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号