...
首页> 外文期刊>Journal of Fluid Mechanics >Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 2. A posteriori modelling
【24h】

Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 2. A posteriori modelling

机译:满载着蒸发液滴的时间混合层的一致大涡模拟。第2部分。后验建模

获取原文
获取原文并翻译 | 示例
           

摘要

Large-eddy simulation (LES) is conducted of a three-dimensional temporal mixing layer whose lower stream is initially laden with liquid drops which may evaporate during the simulation. The gas-phase equations are written in an Eulerian frame for two perfect gas species (carrier gas and vapour emanating from the drops), while the liquid-phase equations are written in a Lagrangian frame. The effect of drop evaporation on the gas phase is considered through mass, species, momentum and energy source terms. The drop evolution is modelled using physical drops, or using computational drops to represent the physical drops. Simulations are performed using various LES models previously assessed on a database obtained from direct numerical simulations (DNS). These LES models are for: (i) the subgrid-scale (SGS) fluxes and (ii) the filtered source terms (FSTs) based on computational drops. The LES, which are compared to filtered-and-coarsened (FC) DNS results at the coarser LES grid, are conducted with 64 times fewer grid points than the DNS, and up to 64 times fewer computational than physical drops. It is found that both constant-coefficient and dynamic Smagorinsky SGS-flux models, though numerically stable, are overly dissipative and damp generated small-resolved-scale (SRS) turbulent structures. Although the global growth and mixing predictions of LES using Smagorinsky models are in good agreement with the FC-DNS, the spatial distributions of the drops differ significantly. In contrast, the constant-coefficient scale-similarity model and the dynamic gradient model perform well in predicting most flow features, with the latter model having the advantage of not requiring a priori calibration of the model coefficient. The ability of the dynamic models to determine the model coefficient during LES is found to be essential since the constant-coefficient gradient model, although more accurate than the Smagorinsky model, is not consistently numerically stable despite using DNS-calibrated coefficients. With accurate SGS-flux models, namely scale-similarity and dynamic gradient, the FST model allows up to a 32-fold reduction in computational drops compared to the number of physical drops, without degradation of accuracy; a 64-fold reduction leads to a slight decrease in accuracy.
机译:对三维时间混合层进行大涡模拟(LES),该三维混合层的下游首先装有液滴,液滴可能在模拟过程中蒸发。气相方程式写在欧拉框架中,用于两种理想气体(载气和从液滴中散发出来的蒸气),而液相方程式写在拉格朗日框架中。液滴蒸发对气相的影响是通过质量,种类,动量和能源等术语来考虑的。使用物理墨滴或使用计算墨滴表示物理墨滴对墨滴演化进行建模。使用先前在从直接数值模拟(DNS)获得的数据库上评估的各种LES模型执行模拟。这些LES模型用于:(i)子网格规模(SGS)通量,以及(ii)基于计算下降量的滤波后的源项(FST)。在较粗糙的LES网格上,将LES与经过过滤和粗化(FC)的DNS结果进行比较,该LES的网格点数比DNS少64倍,计算量最多比物理丢包少64倍。发现恒定系数和动态Smagorinsky SGS-通量模型虽然数值稳定,但它们的耗散性和阻尼过大,产生的小分辨尺度(SRS)湍流结构。尽管使用Smagorinsky模型对LES的全球增长和混合预测与FC-DNS很好地吻合,但液滴的空间分布却有很大差异。相反,恒定系数比例相似模型和动态梯度模型在预测大多数流量特征时表现良好,后一种模型的优点是不需要模型系数的先验校准。发现动态模型在LES期间确定模型系数的能力至关重要,因为尽管常数系数梯度模型比Smagorinsky模型更准确,但尽管使用DNS校准系数也不能始终保持数值稳定。借助精确的SGS-flux模型(即比例相似度和动态梯度),FST模型与物理滴的数量相比,最多可将计算滴减少32倍,而不会降低准确性;减少64倍会导致精度略有下降。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号