...
首页> 外文期刊>Journal of Fluid Mechanics >A generalized Reynolds analogy for compressible wall-bounded turbulent flows
【24h】

A generalized Reynolds analogy for compressible wall-bounded turbulent flows

机译:可压缩壁面湍流的广义雷诺类比

获取原文
获取原文并翻译 | 示例
           

摘要

A generalized Reynolds analogy (GRA) is proposed for compressible wall-bounded turbulent flows (CWTFs) and validated by direct numerical simulations. By introducing a general recovery factor, a similarity between the Reynolds-averaged momentum and energy equations is established for the canonical CWTFs (i.e. pipes, channels, and flat-plate boundary layers that meet the quasi-one-dimensional flow approximation), independent of Prandtl number, wall temperature, Mach number, Reynolds number, and pressure gradient. This similarity and the relationships between temperature and velocity fields constitute the GRA. The GRA relationship between the mean temperature and the mean velocity takes the same quadratic form as Walz’s equation, with the adiabatic recovery factor replaced by the general recovery factor, and extends the validity of the latter to diabatic compressible turbulent boundary layers and channel/pipe flows. It also derives Duan & Martín’s (J. Fluid Mech., vol. 684, 2011, pp. 25–59) empirical relation for flows at different physical conditions (wall temperature, Mach number, enthalpy condition, surface catalysis, etc.). Several key parameters besides the general recovery factor emerge in the GRA. An effective turbulent Prandtl number is shown to be the reason for the parabolic profile of mean temperature versus mean velocity, and it approximates unity in the fully turbulent region. A dimensionless wall temperature, that we call the diabatic parameter, characterizes the wall-temperature effects in diabatic flows. The GRA also extends the analysis to the fluctuation fields. It recovers the modified strong Reynolds analogy proposed by Huang, Coleman & Bradshaw (J. Fluid Mech., vol. 305, 1995, pp. 185–218) and explains the variation of the temperature–velocity correlation coefficient with wall temperature. Thus, the GRA unveils a generalized similarity principle behind the complex nonlinear coupling between the thermal and velocity fields of CWTFs.
机译:提出了可压缩壁面湍流(CWTF)的广义雷诺类比法(GRA),并通过直接数值模拟对其进行了验证。通过引入一般的恢复因子,可以为经典的CWTF(即满足准一维流近似的管道,通道和平板边界层)建立雷诺平均动量和能量方程之间的相似性,而与普朗特数,壁温,马赫数,雷诺数和压力梯度。这种相似性以及温度场和速度场之间的关系构成了GRA。平均温度和平均速度之间的GRA关系采用与Walz方程相同的二次形式,绝热恢复因子被通用恢复因子代替,并将后者的有效性扩展到非绝热可压缩湍流边界层和通道/管道流。它还推导了Duan&Martín(《流体力学》,第684卷,2011年,第25-59页)在不同物理条件(壁温,马赫数,焓条件,表面催化等)下的流动的经验关系。 GRA中除了一般恢复因子外,还有几个关键参数。有效湍流普朗特数被证明是平均温度对平均速度的抛物线分布的原因,它在完全湍流区域近似为1。无因次壁温,我们称为非绝热参数,表征了绝热流中壁温的影响。 GRA还将分析扩展到波动场。它恢复了Huang,Coleman&Bradshaw(J. Fluid Mech。,vol。305,1995,pp。185-218)提出的经修改的强雷诺兹比喻,并解释了温度-速度相关系数随壁温的变化。因此,GRA在CWTF的热场和速度场之间复杂的非线性耦合背后揭示了一种通用的相似性原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号