...
首页> 外文期刊>Journal of Fluid Mechanics >Bouncing on thin air: how squeeze forces in the air film during non-wetting droplet bouncing lead to momentum transfer and dissipation
【24h】

Bouncing on thin air: how squeeze forces in the air film during non-wetting droplet bouncing lead to momentum transfer and dissipation

机译:在稀薄的空气中弹跳:在不润湿的液滴弹跳过程中,气膜中的挤压力如何导致动量传递和耗散

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Millimetre-sized droplets are able to bounce multiple times on flat solid substrates irrespective of their wettability, provided that a micrometre-thick air layer is sustained below the droplet, limiting We to less than or similar to 4. We study the energy conversion during a bounce series by analysing the droplet motion and its shape (decomposed into eigenmodes). Internal modes are excited during the bounce, yet the viscous dissipation associated with the in-flight oscillations accounts for less than 20% of the total energy loss. This suggests a significant contribution from the bouncing process itself, despite the continuous presence of a lubricating air film below the droplet. To study the role of this air film we visualize it using reflection interference microscopy. We quantify its thickness (typically a few micrometres) with sub-millisecond time resolution and similar to 30 nm height resolution. Our measurements reveal strong asymmetry in the air film shape between the spreading and receding phases of the bouncing process. This asymmetry is crucial for effective momentum reversal of the droplet: lubrication theory shows that the dissipative force is repulsive throughout each bounce, even near lift-off, which leads to a high restitution coefficient. After multiple bounces the droplet eventually hovers on the air film, while continuously experiencing a lift force to sustain its weight. Only after a long time does the droplet finally wet the substrate. The observed bounce mechanism can be described with a single oscillation mode model that successfully captures the asymmetry of the air film evolution.
机译:毫米大小的液滴可以在平坦的固体基材上多次反弹,而与它们的润湿性无关,只要在液滴下方保持一微米厚的空气层,就可以将We限制为小于或等于4。通过分析液滴运动及其形状(分解为本征模)来实现反弹系列。弹跳过程中会激发内部模式,但与飞行中的振动相关的粘性耗散却占总能量损失的不到20%。这表明,尽管在液滴下方连续存在润滑性空气膜,但反弹过程本身还是有重要作用的。为了研究这种空气膜的作用,我们使用反射干涉显微镜对其进行可视化。我们用亚毫秒级的时间分辨率和类似于30 nm的高度分辨率来量化其厚度(通常为几微米)。我们的测量结果表明,在弹跳过程的扩散阶段和后退阶段之间,气膜形状存在很大的不对称性。这种不对称性对于液滴的有效动量反转至关重要:润滑理论表明,每次弹跳时耗散力都是排斥性的,即使在升起时也是如此,这导致了较高的恢复系数。经过多次弹跳后,小滴最终会徘徊在气膜上,同时不断经受提升力以维持其重量。液滴经过很长时间才最终润湿基材。可以用单个振荡模式模型描述观察到的弹跳机制,该模型可以成功捕获空气膜演变的不对称性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号