...
首页> 外文期刊>Journal of Engineering Mechanics >Multiscale Elasticity of Tissue Engineering Scaffolds with Tissue-Engineered Bone: A Continuum Micromechanics Approach
【24h】

Multiscale Elasticity of Tissue Engineering Scaffolds with Tissue-Engineered Bone: A Continuum Micromechanics Approach

机译:具有组织工程骨的组织工程支架的多尺度弹性:连续微力学方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Tissue engineering (TE) is the use of a combination of biological cells, engineering and materials methods, and of suitable biochemical and physicochemical factors, in order to improve or replace biological functions. It has brought the advent of entirely new classes of hierarchically organized, multiporous materials, consisting of both chemically and biologically produced parts. Here, we aim at contributing to the unsettled question of the mechanical functioning of bone tissue-engineering scaffolds with tissue-engineered bone_from a theoretical and applied mechanics viewpoint. Therefore, we build on recently developed microelasticity models for vertebrate bone and hydroxyapatite biomaterials, respectively. Tissue engineering scaffolds with tissue-engineered bone are micromechanically repre_sented as tissue-engineered bone-coated macropores in a matrix built up by microporous hydroxyapatite polycrystals, based on an extension toward anisotropy, of Herve_Zaoui's n-layered inclusion problem. The stiffness of macroporous hydroxyapatite-based TE scaffolds with newly ingrown bone is mainly governed by their porosities [vascular (macro) porosity defined through initial scaffold design and volume fraction of ingrown bone; and intercrystalline (micro) porosity between the hydroxyapatite crystals of the scaffold matrix material], while being less influenced by the type of bone growing inside the macropores. For a given degeneration kinetics of the scaffold, the microelastic models suggest apposition rates of bone needed to maintain the stiffness characteristics of the overall biomaterial-bone construct. This can be seen as a first step toward computer-aided engineering design of tissue-engineering scaffolds for large bone defect regeneration.
机译:组织工程学(TE)是结合使用生物细胞,工程学和材料方法以及适当的生化和理化因素,以改善或替代生物学功能。它带来了全新的类别的层次化组织的多孔材料,包括化学和生物生产的部件。在这里,我们的目的是从理论和应用力学的观点出发,为组织工程骨的骨骼组织工程支架的机械功能的悬而未决的问题做出贡献。因此,我们分别基于最近开发的脊椎动物骨骼和羟基磷灰石生物材料的微弹性模型。具有组织工程骨的组织工程支架在微观上以组织工程骨涂层大孔的形式呈现在由Herve_Zaoui的n层包裹体问题向各向异性扩展的微孔羟基磷灰石多晶体构成的基质中。新近生长的骨骼的大孔羟基磷灰石基TE支架的刚度主要受其孔隙率[通过初始支架设计和骨骼的体积分数定义的血管(宏观)孔隙率;和支架基质材料的羟基磷灰石晶体之间的晶间(微)孔隙],而不受大孔内生长的骨类型的影响。对于给定的脚手架退化动力学,微弹性模型表明,保持整体生物材料-骨骼构造的刚度特征所需的骨骼并置率。这可以视为迈向针对大骨缺损再生的组织工程支架的计算机辅助工程设计的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号