首页> 外文期刊>Journal of Energetic Materials >A Versatile Methodology Using Sol-Gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW
【24h】

A Versatile Methodology Using Sol-Gel, Supercritical Extraction, and Etching to Fabricate a Nitramine Explosive: Nanometer HNIW

机译:使用溶胶-凝胶,超临界萃取和蚀刻制造硝胺炸药的多功能方法学:纳米HNIW

获取原文
获取原文并翻译 | 示例
           

摘要

A combinative method with three steps was developed to fabricate HNIW (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtziane) nanoexplosives with the gas anti-solvent (GAS) method improved by introducing a gel frame to limit the overgrowth of recrystallized particles and an acid-assistant to remove the used frame. Forming the mixed gel, by locking the explosive solution into a wet gel whose volume was divided by the networks, was the key for the fabrication. As demonstrated by scanning electron microscopy (SEM) analysis, a log-normal size distribution of nano-HNIW indicated that about 74.4% of the particles had sizes <120nm and maximum particle size was ~300nm. Energy-dispersive X-ray spectroscopy (EDS) and infrared (IR) characterizations showed that the aerogel embedded with nanoexplosive particles was dissolved in hydrochloric acid solution, and the raw e-HNIW was mostly transformed into the a phase (nano-HNIW) during recrystalli-zation. Nano-HNIW exhibited impact and friction sensitivity almost equal to those of raw HNIW, within experimental error. Thermal analysis showed that the decomposition peak temperature decreased by more than 10° C and that the heat release increased by 42.5% when the particle size of HNIW was at the nanometer scale.
机译:开发了一种具有三个步骤的组合方法以使用气体反溶剂(GAS)制备HNIW(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtziane)纳米炸药通过引入凝胶框架以限制重结晶颗粒的过度生长和添加酸助剂以去除使用过的框架,改进了该方法。通过将炸药溶液锁定在湿凝胶中来形成混合凝胶,湿凝胶的体积被网络划分,这是制造的关键。如通过扫描电子显微镜(SEM)分析所证明的,纳米HNIW的对数正态尺寸分布表明,约74.4%的颗粒的尺寸<120nm,最大颗粒的尺寸约为300nm。能量色散X射线能谱(EDS)和红外(IR)表征表明,包埋有纳米炸药颗粒的气凝胶溶解在盐酸溶液中,并且原始e-HNIW在转化过程中大部分转化为a相(纳米HNIW)。重结晶。在实验误差范围内,Nano-HNIW的冲击和摩擦灵敏度几乎与原始HNIW相同。热分析表明,当HNIW的粒径为纳米级时,分解峰温度降低了10℃以上,并且放热增加了42.5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号