...
首页> 外文期刊>Journal of Dynamic Systems, Measurement, and Control >Multi-Degree-of-Freedom Precision Position Sensing and Motion Control Using Two-Axis Hall-Effect Sensors
【24h】

Multi-Degree-of-Freedom Precision Position Sensing and Motion Control Using Two-Axis Hall-Effect Sensors

机译:使用两轴霍尔效应传感器的多自由度精确位置感测和运动控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a novel precision position-sensing methodology using two-axis Hall-effect sensors, where the absolute multi-degree-of-freedom (DOF) positioning of a device above any magnet matrix is possible. Magnet matrices have a periodic magnetic field about each of its orthogonal axes, which can be modeled using Fourier series. This position-sensing methodology was implemented on a Halbach-magnet-matrix-based magnetic-levitation (maglev) stage. It enables unrestricted translational and rotational ranges in planar motions with a potential 6-DOF motion-measuring capability. A Gaussian least-squares differential-correction (GLSDC) algorithm was developed and implemented to estimate the maglev stage's position and orientation in three planar DOFs from raw Hall-effect-sensor measurements. Experimental results show its position resolution of better than 10 μm in translation and 100 μrad in rotation. The maximum rotational range achieved so far is 16 deg, a factor of 100 improvement of a typical laser interferometers' rotational range of a few milliradians. Classical lead-lag compensators were designed and implemented on a digital signal processor (DSP) to close the control loop at a sampling frequency of 800 Hz for the three planar DOFs using the GLSDC outputs. Calibration was performed by comparing the Hall-effect sensors' outputs against the laser-interferometer readings, which improved the positioning accuracy by correcting the GLSDC error. The experimental results exhibit better than a micrometer repeatability. This multi-DOF sensing mechanism is an excellent cost-effective solution to planar micro-positioning applications with unrestricted three-axis travel ranges.
机译:本文介绍了一种使用两轴霍尔效应传感器的新颖的精确位置传感方法,其中在任何磁体矩阵上方的设备的绝对多自由度(DOF)定位都是可能的。磁体矩阵在其每个正交轴上都有一个周期性磁场,可以使用傅里叶级数进行建模。这种位置传感方法是在基于Halbach磁体矩阵的磁悬浮(maglev)平台上实现的。它具有潜在的6自由度运动测量功能,可在平面运动中实现不受限制的平移和旋转范围。开发并实施了高斯最小二乘差分校正(GLSDC)算法,以通过原始霍尔效应传感器测量来估计三个平面自由度中磁悬浮级的位置和方向。实验结果表明,其位置分辨率在平移方面优于10μm,在旋转方面优于100μrad。到目前为止,获得的最大旋转范围是16度,这是典型激光干涉仪几毫弧度的旋转范围提高了100倍。经典的超前滞后补偿器设计并实现在数字信号处理器(DSP)上,以使用GLSDC输出为三个平面自由度以800 Hz的采样频率闭合控制环路。通过将霍尔效应传感器的输出与激光干涉仪的读数进行比较来进行校准,从而通过校正GLSDC误差提高了定位精度。实验结果显示出比微米更好的可重复性。对于具有不受限制的三轴行程范围的平面微定位应用,这种多自由度传感机制是一种极好的成本效益解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号