...
首页> 外文期刊>Journal of Controlled Release: Official Journal of the Controlled Release Society >Nanoscaled buffering zone of charged (PLGA) _n-b-bPEI micelles in acidic microclimate for potential protein delivery application
【24h】

Nanoscaled buffering zone of charged (PLGA) _n-b-bPEI micelles in acidic microclimate for potential protein delivery application

机译:酸性微气候中带电(PLGA)_n-b-bPEI胶束的纳米级缓冲带,可用于潜在的蛋白质递送应用

获取原文
获取原文并翻译 | 示例
           

摘要

Poly(lactide-co-glycolide) (PLGA) has most often been employed for the controlled release of protein formulations because of its safety profile with non-toxic degradation products. Nevertheless, such formulations have been plagued by a local acidic microenvironment and protein-polymer interactions, which result in chemical and physical denaturation of loaded proteins and often unfavorable release profiles. This study investigated the pH change of inner PLGA microsphere (MS) using charged (PLGA) _n-b-branched polyethyleneimine (bPEI) micelles. The designed micelles can be transformed into either micelle or reverse micelle (RM) depending on the solvent and RM can form microspheres. In addition, (PLGA) _n-b-bPEI can be modified into (PLGA) _n-b-(carboxylated bPEI) via carboxylation of the primary amines. Cationic micelle (CM) or anionic micelle (AM) was complexed with counter-charged proteins leading to nanosized particles (approximately 100 nm). In the micelle/protein complexes, the micelles mostly maintained their proton buffering capacity, and consequently, prevented or delayed the typical decrease in pH caused by degradation of PLGA in aqueous solution. Reconstitutable micelle/protein complexes allowed for increased and fine-tuned protein loading (~ 20 wt.% when using CM1 (CM prepared from PLGA _(36 kDa)-b- bPEI _(25 kDa))/insulin complexes) in PLGA MS. In CM2 (CM prepared from (PLGA _(36 kDa)) _2-b-bPEI _(25 kDa))/insulin (4 of weight ratio (WR) of micelle to protein; WR4)-loaded PLGA MS, CM2 strongly prevented the micellar nanoenvironmental pH (pH 6.6 within 5 days and then approximately pH 8.5) to be acidified in PLGA MS for 9 weeks, unlike CM2-free PLGA MS. In conclusion, our findings propose that the proton buffering capacity and protein loading in PLGA MS can be tuned by controlling the complexation ratios of micelles and proteins, polymeric architectures of (PLGA) _n-b-bPEI copolymers and WR of micelle/protein complexes and PLGA (or RM).
机译:聚(丙交酯-共-乙交酯)(PLGA)最常用于蛋白质制剂的控释,因为它与无毒降解产物的安全性有关。然而,这样的制剂已经受到局部酸性微环境和蛋白质-聚合物相互作用的困扰,这导致负载的蛋白质的化学和物理变性以及通常不利的释放曲线。这项研究使用带电(PLGA)_n-b支化聚乙烯亚胺(bPEI)胶束研究了内部PLGA微球(MS)的pH变化。根据溶剂的不同,设计的胶束可以转化为胶束或反胶束(RM),RM可以形成微球。另外,(PLGA)_n-b-bPEI可以通过伯胺的羧化改性为(PLGA)_n-b-(羧基化的bPEI)。阳离子胶束(CM)或阴离子胶束(AM)与带负电荷的蛋白质复合,形成纳米级颗粒(约100 nm)。在胶束/蛋白质复合物中,胶束主要保持其质子缓冲能力,因此防止或延迟了由水溶液中PLGA降解引起的pH值的典型下降。可重构的胶束/蛋白质复合物允许在PLGA MS中增加和微调的蛋白质负载量(使用CM1(由PLGA _(36 kDa)-b- bPEI _(25 kDa)制备的CM)/胰岛素复合物时约为20 wt。%) 。在CM2(由(PLGA _(36 kDa))_2-b-bPEI _(25 kDa)制备的CM2)/胰岛素(胶束与蛋白质的重量比(WR)为4; WR4)加载的PLGA MS中,CM2被强烈阻止与不含CM2的PLGA MS不同,要在PLGA MS中酸化胶束纳米环境的pH值(在5天内达到pH 6.6,然后在大约pH 8.5内酸化9周)。总之,我们的发现表明,PLGA MS中的质子缓冲能力和蛋白质负载可通过控制胶束和蛋白质的络合比,(PLGA)_n-b-bPEI共聚物的聚合物结构以及胶束/蛋白质复合物的WR来调节。 PLGA(或RM)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号