...
首页> 外文期刊>Journal of Controlled Release: Official Journal of the Controlled Release Society >A systems approach to modeling drug release from polymer microspheres to accelerate in vitro to in vivo translation
【24h】

A systems approach to modeling drug release from polymer microspheres to accelerate in vitro to in vivo translation

机译:模拟聚合物微球中药物释放以加速体外到体内翻译的系统方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Mathematical models of controlled release that span the in vitro to in vivo transition are needed to speed the development and translation of clinically-relevant controlled release drug delivery systems. Fully mechanistic approaches are often challenged due to the use of highly-parameterized mathematically complex structures to capture the release mechanism. The simultaneous scarcity of in vivo data to inform these models and parameters leads to a situation where overfitting to capture observed phenomena is common. A data-driven approach to model development for controlled drug release from polymeric microspheres is taken herein, where physiological mechanisms impacting controlled release are incorporated to capture observed changes between in vitro release profiles and in vivo device dynamics. The model is generalizable, using non-specific binding to capture drug-polymer interactions via charge and molecular structure, and it has the ability to describe both inhibited (slowed) and accelerated release resulting from electrostatic or steric interactions. Reactive oxygen species (ROS)-induced degradation of biodegradable polymers was incorporated via a reaction-diffusion formalism, and this suggests that ROS may be the primary effector of the oft-observed accelerated in vivo release of polymeric drug delivery systems. Model performance is assessed through comparisons between model predictions and controlled release of several drugs from various-sized microparticles in vitro and in vivo. (C) 2015 Elsevier B.V. All rights reserved.
机译:需要跨越体外到体内过渡的控释数学模型,以加快与临床相关的控释药物递送系统的开发和翻译。由于使用高度参数化的数学上复杂的结构来捕获释放机制,因此完全机械化方法常常受到挑战。同时缺乏体内数据以告知这些模型和参数的情况导致普遍存在过度拟合以捕获观察到的现象的情况。本文采用了数据驱动的模型开发方法,以控制聚合物从聚合物微球中的释放,其中并入了影响控制释放的生理机制,以捕获体外释放曲线与体内装置动力学之间观察到的变化。该模型是可推广的,使用非特异性结合通过电荷和分子结构捕获药物-聚合物相互作用,并且具有描述静电或空间相互作用导致的抑制(缓慢)释放和加速释放的能力。活性氧(ROS)诱导的可生物降解聚合物降解是通过反应扩散形式进行的,这表明ROS可能是经常观察到的聚合物药物递送系统体内加速释放的主要效应物。通过比较模型预测值和体外和体内几种药物从各种尺寸微粒中的控制释放之间的比较来评估模型性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号