首页> 外文期刊>Journal of Computer-Aided Molecular Design >A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1
【24h】

A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1

机译:新德里金属β-内酰胺酶-1水解机理的量子力学/分子力学研究

获取原文
获取原文并翻译 | 示例
       

摘要

New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.
机译:新德里金属β-内酰胺酶-1(NDM-1)的快速传播和使病原微生物对几乎所有已知的β-内酰胺抗生素产生抗药性的能力已成为对人类健康的主要全球威胁。另外,迄今为止尚未鉴定出有效的NDM-1抑制剂。尽管可获得大量的结构和动力学数据,但仍不完全了解NDM-1水解β-内酰胺抗生素的准确分子特征和酶促反应的细节。在这项研究中,结合分子对接,分子动力学模拟和量子力学/分子力学计算的组合计算方法进行了表征NDM-1催化美罗培南的催化机理。量子力学/分子力学结果表明,电离的D124有利于β-内酰胺环内C-N键的裂解。同时,如果没有水分子与Zn 2配位,则在能量上有利于形成中间体。此外,根据分子动力学结果,保守的残基K211在底物结合和催化中起关键作用,这与先前的诱变数据非常一致。我们的研究为NDM-1水解美罗培南β-内酰胺抗生素的催化机理提供了详细的见解,并为在临床研究中发现针对NDM-1阳性菌株的新抗生素提供了线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号