首页> 外文期刊>Journal of Computational and Applied Mathematics >On a structure formula for classical q-orthogonal polynomials
【24h】

On a structure formula for classical q-orthogonal polynomials

机译:关于经典q正交多项式的结构公式

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The classical orthogonal polynomials are given as the polynomial solutions P_n(x) of the differential equation σ(x)y"(x) + τ(x)y'(x) + λ_ny(x) = 0, where σ(x) turns out to be a polynomial of at most second degree and τ(x) is a polynomial of first degree. In a similar way, the classical discrete orthogonal polynomials are the polynomial solutions of the difference equation σ(x)Δ▽y(x) + τ(x)Δy(x) + λ_ny(x) = 0, where Δy(x) = y(x + 1) - y(x) and ▽y(x) = y(x) - y(x - 1) denote the forward and backward difference operators, respectively. Finally, the classical q-orthogonal polynomials of the Hahn tableau are the polynomial solutions of the q-difference equation σ(x)D_qD_(1/q)y(x) + τ(x)D_qy(x) - λ_(q,n)y(x) = 0, where D_qf(x) = (f(qx) - f(x))/((q - 1)x), q ≠ 1, denotes the q-difference operator. We show by a purely algebraic deduction - without using the orthogonality of the families considered - that a structure formula of the type σ(x)D_(1/q)P_n(x) = α_nP_(n+1)(x) + β_nP_n(x) + γ_nP_(n-1)(x) (n ∈ N:= {1,2,3,…}) is valid. Moreover, our approach does not only prove this assertion, but generates the form of this structure formula. A similar argument applies to the discrete and continuous cases and yields σ(x)▽P_n(x) = α_nP_(n+1)(x) + β_nP_n(x) + γ_nP_(n-1)(x) (n ∈ N) and σ(x)P'_n(x) = α_nP_(n+1)(x) + β_nP_n(x) + γ_nP_(n-1)(x) (n ∈ N). Whereas the latter formulas are well-known, their previous deduction used the orthogonality property. Hence our approach is also of interest in these cases.
机译:经典正交多项式作为微分方程σ(x)y“(x)+τ(x)y'(x)+λ_ny(x)= 0的多项式解P_n(x)给出,其中σ(x)证明是最多二阶的多项式,而τ(x)是一阶的多项式,类似地,经典离散正交多项式是差分方程σ(x)Δ▽y(x)的多项式解。 )+τ(x)Δy(x)+λ_ny(x)= 0,其中Δy(x)= y(x +1)-y(x)和▽y(x)= y(x)-y(x -1)分别表示前向和后向差分算子最后,Hahn table的经典q-正交多项式是q-差分方程σ(x)D_qD_(1 / q)y(x)+的多项式解τ(x)D_qy(x)-λ_(q,n)y(x)= 0,其中D_qf(x)=(f(qx)-f(x))/((q-1)x),q ≠1,表示q差算子,我们通过纯粹的代数演绎表明-在不使用所考虑族的正交性的情况下-σ(x)D_(1 / q)P_n(x)类型的结构公式=α_nP_ (n + 1)(x)+β_nP_n(x)+γ_nP_(n-1) (x)(n∈N:= {1,2,3,…})是有效的。而且,我们的方法不仅证明了这一断言,而且生成了这种结构公式的形式。类似的论点适用于离散情况和连续情况,并得出σ(x)▽P_n(x)=α_nP_(n + 1)(x)+β_nP_n(x)+γ_nP_(n-1)(x)(n∈N )和σ(x)P'_n(x)=α_nP_(n + 1)(x)+β_nP_n(x)+γ_nP_(n-1)(x)(n∈N)。尽管后面的公式是众所周知的,但它们先前的推导使用正交性。因此,在这些情况下,我们的方法也很有趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号