...
首页> 外文期刊>Journal of Catalysis >Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia
【24h】

Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia

机译:催化剂结构对氧化铝载钒上乙烷和丙烷氧化脱氢的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The catalytic properties of Al_2O_3-supported vanadia with a wide range of VO_x surface density (1.4-34.2Vm~2) and structure were examined for the oxidative dehydrogenation of ethane and propane.UV-visible and Raman spectra showed that vanadia is dispersed predominately as isolated monovanadate species below approx 2.3Vm~2.As surface densities increase,two-dimensional polyvanadates appear (2.3-7.0Vm~2),along with increasing amounts of V_2O_5 crystallites at surface densities above 7.0Vm~2.The rate constant for oxidative dehydrogenation (k_1) and its ratio with alkane and alkene bombustion (K_2/k_1 and k_3/k_1,respectively) were compared for both alkane reactants as a function of vanadia surface density.Propene formation rates (per V atom) are approximately eight times higher than ethene formation rates at a given reaction temperature,But the apparent ODH activation energies (E_1) are similar for the two reactants and relatively insensitive to vanadia surface density.Ethene and propene formation rates (per V atom) are strongly influenced by vanadia surface density and reach a maximum value at intermediate surface densities (approx 8Vm~2).The ratio of k_2/k_1 depends weakly on reaction temperature,indicating that activation energies for alkane combustion and ODH reactions are similar.The ratio of k_2/k_1 is independent of surface density of ethane but increases silghtly wih vanadia surface density for propane,suggesting that isolated structures prevalent at low surface densities are slightly more selective for alkane dehydrogenation reactions.The ratio of k_3/k_1 decreases markedly with increasing reaction temperature for both ethane and propane ODH.Thus,the apparent activation energy for alkene combustion (E_3) is much lower than that for alkane dyhydrogenation (E_1) and the difference between these two activationenergies decreases withincreasing surface density.The lower alkene selectivities observed athigh vanadia surface densities are attributed to an increase in alkene adsorption enthalpies with increasing vanadia surface density.The highest yield of alkene is obtained for catalysts containing predominantly isolated monovanadate species and operated at high temperatures that avoid homogeneous reactions (< approx 800K).
机译:研究了Al_2O_3-负载的钒在宽VO_x表面密度(1.4-34.2V / nm〜2)和结构上的催化性能,用于乙烷和丙烷的氧化脱氢,紫外可见和拉曼光谱表明钒分散主要是低于约2.3V / nm〜2的分离的单钒酸盐物种。随着表面密度的增加,出现了二维多钒酸盐(2.3-7.0V / nm〜2),并且在表面密度高于7.0V / nm的情况下,V_2O_5晶体的数量也增加了〜2。比较了两种烷烃反应物的氧化脱氢速率常数(k_1)及其与烷烃和烯烃轰击的比率(分别为K_2 / k_1和k_3 / k_1)作为钒表面密度的函数。 V原子)在给定的反应温度下大约比乙烯形成速率高八倍,但是两种反应物的表观ODH活化能(E_1)相似,并且对钒的表面密度相对不敏感。丙烯的形成速率(每个V原子)受钒表面密度的强烈影响,并在中间表面密度(约8V / nm〜2)达到最大值。k_2/ k_1的比值与反应温度的关系很小,表明活化能为烷烃燃烧和ODH反应相似.k_2 / k_1的比值与乙烷的表面密度无关,但对丙烷来说却增加了钒的表面密度,这表明低表面密度下普遍存在的分离结构对烷烃脱氢反应的选择性更高。乙烷和丙烷ODH的反应温度升高,k_3 / k_1的比值显着降低。因此,烯烃燃烧的表观活化能(E_3)远低于烷烃脱氢反应的表观活化能(E_1),两种活化能之间的差异减小在高钒金属表面密度下观察到的较低的烯烃选择性归因于随着钒的表面密度的增加,烯烃吸附焓增加。对于主要包含分离的单钒酸盐物种且在避免均相反应(<约800K)的高温下运行的催化剂,烯烃的收率最高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号