...
首页> 外文期刊>Journal of Computational Physics >Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes
【24h】

Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes

机译:具有流动和碰撞过程的DVM从自由分子状态到连续状态状态的流动的数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A discrete velocity method (DVM) with streaming and collision processes is presented in this work for simulation of flows from free molecular regime to continuum regime. The present scheme can be considered as a semi-Lagrangian like scheme. At first, we follow the conventional DVM to discretize the phase velocity space by a number of discrete velocities. Then, for each discrete velocity, the kinetic equation with BGK-Shakhov model is integrated in space and time within one time step. As a result, a simple algebraic formulation can be obtained, and its solution can be marched in time by the streaming and collision processes. However, differently from the conventional semi-Lagrangian scheme, the present scheme uses the MUSCL approach with van Albada limiter in the process of reconstructing the distribution function at the surrounding points of the cell center, and the transport distance is controlled in order to avoid extrapolation. This makes the present scheme be capable of simulating the hypersonic rarefied flows. In addition, as compared to the unified gas kinetic scheme (UGKS), the present scheme is simpler and easier for implementation. Thus, the computational efficiency can be improved accordingly. To validate the proposed numerical scheme, test examples from free molecular regime to continuum regime are simulated. Numerical results showed that the present scheme can predict the flow properties accurately even for hypersonic rarefied flows. (C) 2015 Elsevier Inc. All rights reserved.
机译:在这项工作中提出了一种具有流和碰撞过程的离散速度方法(DVM),用于模拟从自由分子状态到连续介质状态的流动。本方案可以被认为是类似半拉格朗日方案。首先,我们遵循传统的DVM通过许多离散速度离散化相速度空间。然后,对于每个离散速度,将具有BGK-Shakhov模型的动力学方程在一个时间步内在时空上进行积分。结果,可以获得简单的代数公式,并且其解决方案可以通过流和碰撞过程及时进行。然而,与常规的半拉格朗日方案不同,本方案在重构细胞中心周围点的分布函数的过程中使用了带有van Albada限幅器的MUSCL方法,并且控制了传输距离以避免外推。这使得本方案能够模拟高超音速稀薄流。另外,与统一气体动力学方案(UGKS)相比,本方案更简单且易于实施。因此,可以相应地提高计算效率。为了验证所提出的数值方案,模拟了从自由分子态到连续体态的测试实例。数值结果表明,该方案即使对于高超音速稀薄流也能准确预测流场特性。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号