...
首页> 外文期刊>Journal of Computational Physics >Lattice Boltzmann phase-?eld modeling of thermocapillary ?ows in a con?ned microchannel
【24h】

Lattice Boltzmann phase-?eld modeling of thermocapillary ?ows in a con?ned microchannel

机译:密闭微通道中热毛细流的晶格玻尔兹曼相场模拟

获取原文
获取原文并翻译 | 示例

摘要

To understand how thermocapillary forces manipulate the droplet motion in a con?ned microchannel, a lattice Boltzmann phase-?eld model is developed to simulate immiscible thermocapillary ?ows with consideration of ?uid-surface interactions. Based on our recent work of Liu et al., 2013 [54], an interfacial force of potential form is proposed to model the interfacial tension force and the Marangoni stress. As only the ?rst-order derivatives are involved, the proposed interfacial force is easily combined with the wetting boundary condition to account for ?uid-surface interactions. The hydrodynamic equations are solved using a multiple-relaxation-time algorithm with the interfacial force treated as a forcing term, while an additional convection-diffusion equation is solved by a passive-scalar approach to obtain the temperature ?eld, which is coupled to the interfacial tension by an equation of state. The model is ?rst validated against analytical solutions for the thermocapillary-driven convection in two superimposed ?uids at negligibly small Reynolds and Marangoni numbers. It is then demonstrated to produce the correct equilibrium contact angle for a binary ?uid with different viscosities when a constant interfacial tension is taken into account. Finally, we numerically simulate the thermocapillary ?ows for a micro?uidic droplet adhering on a solid wall and subject to a simple shear ?ow when a laser is applied to locally heat the ?uids, and investigate the in?uence of contact angle and ?uid viscosity ratio on the droplet dynamical behavior. The droplet motion can be completely blocked provided that the contact angle exceeds a threshold value, below which the droplet motion successively undergoes four stages: constant velocity, deceleration, acceleration, and approximately constant velocity. When the droplet motion is completely blocked, three steady vortices are clearly visible, and the droplet is fully ?lled by two counter-rotating vortices with the smaller one close to the external vortex. The thermocapillary convection is strengthened with decreasing viscosity ratio of the droplet to the carrier ?uid. For low viscosity ratios, the droplet motion is completely blocked and exhibits the similar behavior, but the structure of the internal vortices is more complicated at the lowest viscosity ratio. For high viscosity ratios, the droplet motion is partially blocked and undergoes a series of complex transitions, which can be explained as a result of the dynamically varying Marangoni forces.
机译:为了了解热毛细作用力如何在有限的微通道中操纵液滴的运动,建立了格子玻尔兹曼相场模型,以考虑流体-表面相互作用来模拟不相容的热毛细作用流。基于我们Liu et al。,2013的最新工作[54],提出了一种势能形式的界面力来模拟界面张力和Marangoni应力。由于仅涉及一阶导数,因此建议的界面力很容易与润湿边界条件结合起来以解决流体-表面相互作用。使用多重松弛时间算法以界面力作为强迫项来求解流体力学方程,而通过被动标量方法求解附加的对流扩散方程以获得温度场,该场与温度场耦合。界面张力由状态方程表示。该模型首先针对热毛细驱动的对流的解析解进行了验证,该热对流在两个叠加流体中以很小的雷诺数和Marangoni数进行了计算。然后证明了当考虑到恒定的界面张力时,对于具有不同粘度的二元流体产生正确的平衡接触角。最后,我们对附着在固体壁上的微流体液滴的热毛细管流动进行了数值模拟,当使用激光对流体进行局部加热时,它们会经历简单的剪切流,并研究接触角和接触角的影响。流体粘度比对液滴动力学行为的影响。如果接触角超过阈值,则可以完全阻止液滴运动,在该阈值以下,液滴运动将连续经历四个阶段:恒定速度,减速,加速和近似恒定速度。当液滴的运动被完全阻止时,三个稳定的涡流清晰可见,并且液滴被两个反向旋转的涡流完全充满,较小的一个靠近外部涡流。随着液滴与载体流体的粘度比的降低,热毛细管对流得以增强。对于低粘度比,液滴运动被完全阻止并表现出相似的行为,但是在最低粘度比下,内部涡旋的结构更加复杂。对于高粘度比,液滴运动会被部分阻止并经历一系列复杂的转变,这可以解释为动态变化的Marangoni力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号