首页> 外文期刊>Journal of Computational Physics >Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids
【24h】

Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids

机译:三维解自适应立方球面网格上双曲守恒律的多维有限体积方案

获取原文
获取原文并翻译 | 示例
           

摘要

A scalable parallel and block-adaptive cubed-sphere grid simulation framework is described for solution of hyperbolic conservation laws in domains between two concentric spheres. In particular, the Euler and ideal magnetohydrodynamics (MHD) equations are considered. Compared to existing cubed-sphere grid algorithms, a novelty of the proposed approach involves the use of a fully multi-dimensional finite-volume method. This leads to important advantages when the treatment of boundaries and corners of the six sectors of the cubed-sphere grid is considered. Most existing finite-volume approaches use dimension-by-dimension differencing and require special interpolation or reconstruction procedures at ghost cells adjacent to sector boundaries in order to achieve an order of solution accuracy higher than unity. In contrast, in our multi-dimensional approach, solution blocks adjacent to sector boundaries can directly use physical cells from the adjacent sector as ghost cells while maintaining uniform second-order accuracy. This leads to important advantages in terms of simplicity of implementation for both parallelism and adaptivity at sector boundaries. Crucial elements of the proposed scheme are: unstructured connectivity of the six grid root blocks that correspond to the six sectors of the cubed-sphere grid, multi-dimensional k-exact reconstruction that automatically takes into account information from neighbouring cells isotropically and is able to automatically handle varying stencil size, and adaptive division of the solution blocks into smaller blocks of varying spatial resolution that are all treated exactly equally for inter-block communication, flux calculation, adaptivity and parallelization. The proposed approach is fully three-dimensional, whereas previous studies on cubed-sphere grids have been either restricted to two-dimensional geometries on the sphere or have grids and solution methods with limited capabilities in the third dimension in terms of adaptivity and parallelism. Numerical results for several problems, including systematic grid convergence studies, MHD bow-shock flows, and global modelling of solar wind flow are discussed to demonstrate the accuracy and efficiency of the proposed solution procedure, along with assessment of parallel computing scalability for up to thousands of computing cores.
机译:描述了可伸缩的并行和块自适应立方体球网格仿真框架,用于解决两个同心球之间域中的双曲守恒定律。特别是考虑了欧拉方程和理想磁流体动力学(MHD)方程。与现有的立方球体网格算法相比,所提出方法的新颖性涉及使用完全多维有限体积方法。当考虑对立方球体网格的六个扇区的边界和角进行处理时,这将带来重要的优势。大多数现有的有限体积方法使用逐维差分,并且需要在邻近扇区边界的幻影单元处进行特殊插值或重构过程,以实现高于单位精度的求解精度。相反,在我们的多维方法中,与扇区边界相邻的解决方案块可以直接使用相邻扇区中的物理单元作为重影单元,同时保持一致的二阶精度。就并行性和扇区边界处的适应性的简化实现而言,这带来了重要的优势。提出的方案的关键要素是:六个立方体根块的非结构化连通性,它们对应于立方球体网格的六个扇区;多维k精确重建,该重建可自动各向同性地考虑来自相邻单元的信息,并且能够自动处理变化的模板尺寸,并将解决方案块自适应地划分为不同的空间分辨率的较小块,这些块在块间通信,通量计算,适应性和并行化方面均被完全平等地对待。所提出的方法是完全三维的,而先前关于立方球体网格的研究要么限于球体上的二维几何形状,要么在适应性和并行性方面在三维上具有有限的能力的网格和求解方法。讨论了若干问题的数值结果,包括系统网格收敛研究,MHD弓形冲击流和太阳风流全局建模,以证明所提出解决方案的准确性和效率,以及对多达数千个并行计算可扩展性的评估计算核心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号