...
首页> 外文期刊>Journal of Computational Physics >Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems
【24h】

Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid-gas-particle systems

机译:液-气-颗粒系统中的格子Boltzmann方法使流体界面与沉入的固体颗粒相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

Due to their finite size and wetting properties, particles deform an interface locally, which can lead to capillary interactions that dramatically alter the behavior of the system, relative to the particle-free case. Many existing multi-component solvers suffer from spurious currents and the inability to employ components with sufficiently large density differences due to stability issues. We developed a liquid-gas-particle (LGP) lattice Boltzmann method (LBM) algorithm from existing multi-component and particle dynamics algorithms that is capable of suppressing spurious currents when geometry is fixed while simulating components with liquid-gas properties. This paper presents the LGP algorithm, with several code validations. It discusses numerical issues raised by the results and the conditions under which the algorithm is most useful. The previously existing particle dynamics algorithm was augmented to capture surface tension forces arising from the interface, which was validated for the case of a 2D capillary tube. Using the full algorithm, a particle situated in a region of bulk fluid in an otherwise quiescent situation remained in its original location, indicating that spurious currents were suppressed. A particle brought into the interface of a drop (without gravity) achieved its expected depth of immersion into the drop, demonstrating that all aspects of the code work together to produce the correct equilibrium state when a particle is in the interface. As in an experiment, two particles on a flat interface approached each other due to capillary effects. The simulation approach velocity was faster than that of the experiment, but agreed qualitatively, achieving the same equilibrium state. Given the validations and the favorable, though imperfect, experimental comparison, this algorithm can be a useful tool for simulating LGP systems. The motion of particles normal to the interface can be considered reliable, and the motion tangent to the interface can be considered qualitatively accurate, leading to the correct equilibrium state. (C) 2014 Elsevier Inc. All rightsreserved.
机译:由于其有限的尺寸和润湿特性,相对于无颗粒的情况,颗粒会局部使界面变形,这会导致毛细管相互作用,从而极大地改变系统的行为。由于稳定性问题,许多现有的多组件求解器会遭受杂散电流和无法使用密度差异足够大的组件的困扰。我们从现有的多分量和粒子动力学算法开发了一种液-气-粒子(LGP)格子Boltzmann方法(LBM)算法,该算法能够在几何形状固定的同时模拟具有液-气特性的组件时抑制杂散电流。本文介绍了LGP算法,并进行了一些代码验证。它讨论了结果引起的数值问题以及该算法最有用的条件。增强了先前存在的粒子动力学算法,以捕获由界面产生的表面张力,这在二维毛细管的情况下得到了验证。使用完整算法,处于静止状态的散装流体区域中的粒子仍保留在其原始位置,这表明杂散电流得到了抑制。带入液滴界面(无重力)的粒子达到了预期的浸入液滴的深度,这表明当粒子处于界面中时,代码的所有方面都可以协同工作以产生正确的平衡状态。与实验中一样,由于毛细作用,平坦界面上的两个粒子相互靠近。模拟进场速度比实验速度快,但在定性上达成一致,达到了相同的平衡状态。有了验证和有利的(尽管不完美的)实验比较,该算法可以成为模拟LGP系统的有用工具。垂直于界面的粒子运动可以被认为是可靠的,并且与界面相切的运动可以被认为是定性的,从而导致正确的平衡状态。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号