...
首页> 外文期刊>Journal of Computational Physics >A coupled ordinates method for solution acceleration of rarefied gas dynamics simulations
【24h】

A coupled ordinates method for solution acceleration of rarefied gas dynamics simulations

机译:稀有气体动力学模拟解加速的耦合坐标法

获取原文
获取原文并翻译 | 示例

摘要

Non-equilibrium rarefied flows are frequently encountered in a wide range of applications, including atmospheric re-entry vehicles, vacuum technology, and microscale devices. Rarefied flows at the microscale can be effectively modeled using the ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) form of the Boltzmann kinetic equation. Numerical solutions of these equations are often based on the finite volume method (FVM) in physical space and the discrete ordinates method in velocity space. However, existing solvers use a sequential solution procedure wherein the velocity distribution functions are implicitly coupled in physical space, but are solved sequentially in velocity space. This leads to explicit coupling of the distribution function values in velocity space and slows down convergence in systems with low Knudsen numbers. Furthermore, this also makes it difficult to solve multiscale problems or problems in which there is a large range of Knudsen numbers. In this paper, we extend the coupled ordinates method (COMET), previously developed to study participating radiative heat transfer, to solve the ESBGK equations. In this method, at each cell in the physical domain, distribution function values for all velocity ordinates are solved simultaneously. This coupled solution is used as a relaxation sweep in a geometric multigrid method in the spatial domain. Enhancements to COMET to account for the non-linearity of the ESBGK equations, as well as the coupled implementation of boundary conditions, are presented. The methodology works well with arbitrary convex polyhedral meshes, and is shown to give significantly faster solutions than the conventional sequential solution procedure. Acceleration factors of 5-9 are obtained for low to moderate Knudsen numbers on single processor platforms. (C) 2015 Elsevier Inc. All rights reserved.
机译:非平衡稀疏流在广泛的应用中经常遇到,包括大气再进入车辆,真空技术和微型设备。可以使用Boltzmann动力学方程的椭圆统计Bhatnagar-Gross-Krook(ESBGK)形式有效地建模稀疏流。这些方程的数值解通常基于物理空间中的有限体积法(FVM)和速度空间中的离散坐标法。但是,现有的求解器使用顺序求解程序,其中速度分布函数在物理空间中隐式耦合,但是在速度空间中顺序求解。这导致速度空间中分布函数值的显式耦合,并减慢了具有低Knudsen数的系统的收敛。此外,这也使得难以解决多尺度问题或克努森数范围较大的问题。在本文中,我们扩展了先前开发的用于研究参与辐射传热的耦合坐标法(COMET),以求解ESBGK方程。在这种方法中,在物理域中的每个单元上,同时求解所有速度纵坐标的分布函数值。该耦合解在空间域中用作几何多重网格方法中的弛豫扫描。提出了对COMET的增强,以解决ESBGK方程的非线性问题,以及边界条件的耦合实现。该方法适用于任意凸多面体网格,并且显示出比传统的顺序求解过程更快的求解速度。对于单处理器平台上的中低Knudsen数,获得5-9的加速因子。 (C)2015 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号