首页> 外文期刊>Journal of Computational Physics >Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods
【24h】

Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods

机译:使用耦合格子Boltzmann方法对微通道中的电动流动进行建模

获取原文
获取原文并翻译 | 示例
           

摘要

We present a numerical framework to solve the dynamic model for electrokinetic flows in microchannels using coupled lattice Boltzmann methods. The governing equation for each transport process is solved by a lattice Boltzmann model and the entire process is simulated through an iteration procedure. After validation, the present method is used to study the applicability of the Poisson-Boltzmann model for electrokinetic flows in microchannels. Our results show that for homogeneously charged long channels, the Poisson-Boltzmann model is applicable for a wide range of electric double layer thickness. For the electric potential distribution, the Poisson-Boltzmann model can provide good predictions until the electric double layers fully overlap, meaning that the thickness of the double layer equals the channel width. For the electroosmotic velocity, the Poisson-Boltzmann model is valid even when the thickness of the double layer is 10 times of the channel width. For heterogeneously charged microchannels, a higher zeta potential and an enhanced velocity field may cause the Poisson-Boltzmann model to fail to provide accurate predictions. The ionic diffusion coefficients have little effect on the steady flows for either homogeneously or heterogeneously charged channels. However the ionic valence of solvent has remarkable influences on both the electric potential distribution and the flow velocity even in homogeneously charged microchannels. Both theoretical analyses and numerical results indicate that the valence and the concentration of the counter-ions dominate the Debye length, the electrical potential distribution, and the ions transport. The present results may improve the understanding of the electrokinetic transport characteristics in microchannels.
机译:我们提出了一个数值框架,以解决使用耦合晶格玻尔兹曼方法的微通道中的电动流动的动力学模型。每个运输过程的控制方程由格子Boltzmann模型求解,整个过程通过迭代过程进行仿真。验证后,本方法用于研究Poisson-Boltzmann模型在微通道中的电动流动的适用性。我们的结果表明,对于均匀充电的长通道,泊松-玻耳兹曼模型适用于各种双电层厚度。对于电势分布,Poisson-Boltzmann模型可以提供良好的预测,直到双电层完全重叠为止,这意味着双电层的厚度等于沟道宽度。对于电渗速度,即使双层的厚度是通道宽度的10倍,泊松-玻耳兹曼模型也是有效的。对于异质电荷的微通道,较高的zeta电位和增强的速度场可能会导致Poisson-Boltzmann模型无法提供准确的预测。离子扩散系数对于均匀或非均匀带电通道的稳定流几乎没有影响。然而,即使在均匀充电的微通道中,溶剂的离子化合价对电势分布和流速都有显着影响。理论分析和数值结果均表明,反离子的化合价和浓度主导着德拜长度,电势分布和离子迁移。目前的结果可以提高对微通道中电动传输特性的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号