...
首页> 外文期刊>Journal of Computational Physics >A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations
【24h】

A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations

机译:与时间有关的随机偏微分方程的动态双正交方法II:适应性和一般化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This is part II of our paper in which we propose and develop a dynamically bi-orthogonal method (DyBO) to study a class of time-dependent stochastic partial differential equations (SPDEs) whose solutions enjoy a low-dimensional structure. In part I of our paper [9], we derived the DyBO formulation and proposed numerical algorithms based on this formulation. Some important theoretical results regarding consistency and bi-orthogonality preservation were also established in the first part along with a range of numerical examples to illustrate the effectiveness of the DyBO method. In this paper, we focus on the computational complexity analysis and develop an effective adaptivity strategy to add or remove modes dynamically. Our complexity analysis shows that the ratio of computational complexities between the DyBO method and a generalized polynomial chaos method (gPC) is roughly of order O((m / _(N p))~3) for a quadratic nonlinear SPDE, where m is the number of mode pairs used in the DyBO method and _(N p) is the number of elements in the polynomial basis in gPC. The effective dimensions of the stochastic solutions have been found to be small in many applications, so we can expect m is much smaller than _(N p) and computational savings of our DyBO method against gPC are dramatic. The adaptive strategy plays an essential role for the DyBO method to be effective in solving some challenging problems. Another important contribution of this paper is the generalization of the DyBO formulation for a system of time-dependent SPDEs. Several numerical examples are provided to demonstrate the effectiveness of our method, including the Navier-Stokes equations and the Boussinesq approximation with Brownian forcing.
机译:这是本文的第二部分,我们提出并开发了一种动态双正交方法(DyBO),以研究一类时间依赖的随机偏微分方程(SPDE),其解具有低维结构。在本文的第一部分[9]中,我们推导了DyBO公式,并在此公式的基础上提出了数值算法。在第一部分中,还建立了一些有关一致性和双正交性保留的重要理论结果,并通过一系列数值例子说明了DyBO方法的有效性。在本文中,我们着重于计算复杂度分析,并开发一种有效的适应性策略来动态添加或删除模式。我们的复杂度分析表明,对于二次非线性SPDE,DyBO方法与广义多项式混沌方法(gPC)之间的计算复杂度比率大约为O((m / _(N p))〜3)阶,其中m为DyBO方法中使用的模式对数和_(N p)是gPC中以多项式为基础的元素数。已经发现,在许多应用中,随机解决方案的有效尺寸都很小,因此我们可以预期m比_(N p)小得多,并且针对gPC的DyBO方法的计算量可观节省。自适应策略对于DyBO方法有效解决某些挑战性问题起着至关重要的作用。本文的另一个重要贡献是对依赖于时间的SPDE系统的DyBO公式的推广。提供了一些数值示例来证明我们方法的有效性,包括Navier-Stokes方程和具有Brownian强迫的Boussinesq逼近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号