首页> 外文期刊>Journal of Computational Physics >Modeling and discretization errors in large eddy simulations of hydrodynamic and magnetohydrodynamic channel flows
【24h】

Modeling and discretization errors in large eddy simulations of hydrodynamic and magnetohydrodynamic channel flows

机译:流体动力和磁流体动力通道水流的大涡模拟中的建模和离散化误差

获取原文
获取原文并翻译 | 示例
           

摘要

We assess the performances of three different subgrid scale models in large eddy simulations (LES) of turbulent channel flows. Two regimes are considered: hydrodynamic and magnetohydrodynamic (i.e. in the presence of a uniform wall-normal magnetic field). The simulations are performed using a second-order finite volume (FV) and a pseudo-spectral (PS) method. The LES results are compared with under-resolved results (obtained without model) and direct numerical simulations (DNS). We show that discretization errors affect the FV results in two ways: (1) the flow statistics differ from the spectral estimates in the absence of subgrid model; and (2) the eddy viscosity systematically underestimates the spectral value in the presence of a subgrid model. This is mainly because numerical errors affect the computation of the derivatives, and in particular, they lower the discrete strain rate appearing in the viscous term and the subgrid model. The magnitude of the numerical errors further varies with the mesh resolution and the intensity of the turbulent fluctuations. In this manuscript, a novel formulation of the discrete strain, which was proven successful in homogeneous isotropic turbulence, is used to compute the FV eddy viscosities. Although the average norm of the discrete strain is largely increased using this formulation, the effect on the flow dynamics is marginal. This is explained by analysing the contribution of each term of the discrete kinetic energy balance. It is shown how the underestimation of the discrete viscous dissipation inhibits the effect of the improved discrete strain.
机译:我们在湍流通道大涡模拟(LES)中评估了三种不同的子网格比例模型的性能。考虑了两种方式:流体动力和磁流体动力(即在均匀的壁法向磁场存在下)。使用二阶有限体积(FV)和伪谱(PS)方法执行模拟。将LES结果与未解决的结果(无需模型即可获得)和直接数值模拟(DNS)进行比较。我们表明离散误差以两种方式影响FV结果:(1)在没有子网格模型的情况下,流量统计不同于频谱估计; (2)在存在亚网格模型的情况下,涡流粘度系统地低估了光谱值。这主要是因为数值误差会影响导数的计算,尤其是它们会降低粘性项和子网格模型中出现的离散应变率。数值误差的大小还随网格分辨率和湍流涨落的强度而变化。在本手稿中,离散应变的新公式(已在均匀各向同性湍流中被证明是成功的)用于计算FV涡流粘度。尽管使用此公式可以大大提高离散应变的平均范数,但对流动动力学的影响很小。这是通过分析离散动能平衡的每个项的贡献来解释的。它显示了离散粘性耗散的低估如何抑制了改进的离散应变的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号